(Press-News.org) The nucleus is the headquarters of a cell and molecules constantly move across the nuclear membrane through pores. The transport of these molecules is both selective and fast; some 1,000 molecules per second can move in or out. Scientists from the University of Groningen and Delft University of Technology, both in the Netherlands, and a colleague from the Swedish Chalmers University of Technology, have developed an artificial model of these pores using simple design rules, which enabled them to study how this feat is accomplished. Their results were published on 31 March in Nature Communications.
Nuclear pores are extremely complicated structures. The pore itself is a big protein complex and the opening of the pore is filled with a dense network of disordered proteins called nucleoporins. These proteins regulate selective transport, but exactly how they do this is still unclear. 'The nuclear pore complex is one of the biggest protein structures in the cell,' explains Patrick Onck, professor of Micromechanics at the University of Groningen. 'We previously studied the pores in all their complexity, but for this study, we created a drastically simplified 'designer' pore to investigate the essential physical mechanisms of transport.'
Nanopore
First, the team analysed the composition of the nucleoporins to design a simplified, 'average' version, which they termed nucleoporin X, or NupX for short. These proteins are made up of domains comprising phenylalanine (F) and glycine (G) amino acids in tandem, and these play an essential role in transport. These FG repeats are separated by 'spacers' of other amino acids. In addition to the FG repeats, some nucleoporins also contain domains of glycine, leucine, phenylalanine and glycine, or GLFG repeats. The team designed proteins that contain both domains, separated by spacers of ten amino acids.
NupX was tested in two different systems: it was studied experimentally, attached to a surface and added to artificial nanopores that were 'drilled' in a 'membrane' of silicon nitride, and through molecular dynamics simulations. The experiments were performed at Delft University of Technology, while the simulations were prepared and executed in Groningen, mostly by Henry de Vries, a PhD student in Onck's laboratory.
Transport ticket
The nucleoporins were tested for interactions with non-specific proteins and with chaperones, which are proteins that act as transport tickets through the pore. In the cell, large molecules that must be transported into or out of the nucleus can only do so when they are attached to such a chaperone. The artificial nucleoporins selectively interacted with the chaperones but not with the non-specific proteins. This demonstrated that the NupX pores are fully functional: they are able to facilitate selective transport. De Vries: 'However, the experiments showed that transport through the artificial pores occurs but not what happens inside the pore. With our simulations, we showed what exactly happens inside the pore as the chaperones translocate, while the non-specific proteins do not interact with the pore at all.'
The simulations also revealed how the FG and the GLFG nucleoporins were distributed inside the pore. 'Recent studies suggested that they would be in different places in nuclear pores and that this might help to create selectivity,' says De Vries. 'However, we found that they were homogenously distributed and yet we still saw selectivity.' Another suggestion was that the amino acids that make up the spacers are important for the selectivity. 'Our results showed that the specific sequence of amino acids in the spacer doesn't matter since we used random sequences. The only important part is the ratio of charged amino acids to hydrophobic amino acids within the spacers, which determines the stickiness of the proteins.'
Redundancy
The final conclusion of the study is that a very simple system in nucleoporins that has limited variation still produces a selective pore. 'What is needed is a certain density of these FG nucleoporins,' says Onck. 'These form a barrier, which can only be breached by the chaperones.' This begs the question of why the pores contain a very large number of different nucleoporins in nature. Onck: 'We know that nature doesn't always come up with optimized solutions. However, their redundancy could very well have a function in natural pores.'
The fact that the very simple artificial system already reproduces selective transport mechanisms means that the scientists now have an excellent tool to study the physical principles that regulate nuclear pore function. Onck: 'This could lead to new fundamental insights but also to new applications, for example in creating filtration systems, or in the design of artificial cells.'
Simple Science Summary
The nucleus of a cell is very important since it acts as the headquarters for the entire cell. It is surrounded by a barrier, the nuclear membrane. Pores in this membrane allow communication between the nucleus and the rest of the cell. The pores are filled with special proteins, called nucleoporins, which select what can move in or out of the nucleus. It is not known exactly how this selection takes place. Therefore, scientists constructed artificial pores in which they placed a designer protein that mimicked the most common characteristics of real nucleoporins. This gave them a first insight into how these proteins act. With this knowledge, it might, for example, be possible to design new pores that can act as selective filters.
INFORMATION:
Reference: Alessio Fragasso, Hendrik W. de Vries, John Andersson, Eli O. van der Sluis, Erik van der Giessen, Andreas Dahlin, Patrick R. Onck, Cees Dekker: A designer FG-Nup that reconstitutes the selective transport barrier of the nuclear pore complex. Nature Communications, 31 March 2021
First study in bereaved relatives' experience during Covid-19 pandemic lockdown published today
The study makes important recommendations for health and social care professionals providing end-of-life-care
Bereaved families highlighted their need for practical and emotional support when a family member was at end of life
The study found families have increased communication needs when a family member was at end of life, encompassing holistic as well as clinical connections
Phone calls between patients and their relatives should be prioritised during the pandemic to allow loved ones to say goodbye, a new study providing recommendations to healthcare professionals has suggested.
The ...
Gustavo Aguirre and William Beltran, veterinary ophthalmologists and vision scientists at the University of Pennsylvania School of Veterinary Medicine, have studied a wide range of different retinal blinding disorders. But the one caused by mutations in the NPHP5 gene, leading to a form of Leber congenital amaurosis (LCA), is one of the most severe.
"Children with this disorder are not visual," says Aguirre. "They have a wandering, searching look on their faces and are usually diagnosed at a young age."
A nearly identical disease naturally occurs in dogs. In a new paper in the journal Molecular Therapy, Aguirre, Beltran, and colleagues at Penn and other institutions have demonstrated that a canine gene therapy can restore both normal structure and function to the retina's ...
University of California, Irvine, biologists have discovered that plants influence how their bacterial and fungal neighbors react to climate change. This finding contributes crucial new information to a hot topic in environmental science: in what manner will climate change alter the diversity of both plants and microbiomes on the landscape? The paper appears in Elementa: Sciences of the Anthropocene.
The research took place at the Loma Ridge Global Change Experiment, a decade-long study in which scientists simulate the impacts of climate change on neighboring grasslands and coastal scrublands in Southern California. Experimental treatments there include nitrogen addition, a common result of local fossil fuel burning, ...
The human brain regions responsible for speech and communication keep our world running by allowing us to do things like talk with friends, shout for help in an emergency and present information in meetings.
However, scientific understanding of just how these parts of the brain work is limited. Consequently, knowledge of how to improve challenges such as speech impediments or language acquisition is limited as well.
Using an ultra-lightweight, wireless implant, a University of Arizona team is researching songbirds - one of the few species that share humans' ability to learn new vocalizations - to improve scientific ...
Cone snails aren't glamorous. They don't have svelte waistlines or jaw-dropping good looks. Yet, some of these worm-hunting gastropods are the femme fatales or lady killers of the undersea world, according to a new study conducted by an international team of researchers, including University of Utah Health scientists.
The researchers say the snails use a previously undetected set of small molecules that mimic the effects of worm pheromones to drive marine worms into a sexual frenzy, making it easier to lure them out of their hiding places so the snails can gobble them up.
"In essence, these cone snails have found a way to turn the natural sex drive of their prey into a lethal weapon," says Eric W. ...
Researchers from Queen Mary University of London have shown for the first time that animal DNA shed within the environment can be collected from the air.
The proof-of-concept study, published in the journal PeerJ, opens up potential for new ecological, health and forensic applications of environmental DNA (eDNA), which to-date has mainly been used to survey aquatic environments.
Living organisms such as plants and animals shed DNA into their surrounding environments as they interact with them. In recent years, eDNA has become an important tool to help scientists identify species found within different environments. However, whilst a range of environmental samples, including ...
Tomatoes are an important and popular crop, but the tasty ketchup, salsa and pasta sauce they yield comes at a price: overuse of chemical fertilizers. Now, researchers report in ACS' Journal of Agricultural and Food Chemistry they have recruited a fungus to bolster fertilizer efficiency, meaning tastier tomatoes can be grown with less fertilizer.
Tomato plants have a long growth period and need more nutrients -- particularly nitrogen and phosphorus-- than many other crops. Supplying these nutrients through a chemical fertilizer is inefficient, because the nutrients can leach away, evaporate or get trapped in insoluble compounds in the soil, among other problems. Some farmers react by overusing ...
Key Points
The PURE study is the first multinational study exploring the association between unprocessed and processed meat intakes with health outcomes in low-, middle-, and high-income countries.
The consumption of unprocessed red meat and poultry was not found to be associated with mortality nor major cardiovascular disease events.
In contrast, higher processed meat intake was associated with higher risks of both total mortality and major cardiovascular disease.
Rockville, MD - Red meat is a major source of medium- and long-chain saturated fatty acids, which may lead to an increased risk of cardiovascular disease. Processed meat, which has been modified to improve taste or extend its shelf-life, has also been associated with an increased ...
Hamilton, ON (March 31, 2021) - A global study led by Hamilton scientists has found a link between eating processed meat and a higher risk of cardiovascular disease. The same study did not find the same link with unprocessed red meat or poultry.
The information comes from the diets and health outcomes of 134,297 people from 21 countries spanning five continents, who were tracked by researchers for data on meat consumption and cardiovascular illnesses.
After following the participants for almost a decade, the researchers found consumption of 150 grams or more of processed meat a week was associated with a 46 per cent higher risk of cardiovascular disease and a 51 per cent ...
Tilapias living in crowded aquaculture ponds or small freshwater reservoirs adapt so well to these stressful environments that they stop growing and reproduce at a smaller size than their stress-free counterparts.
A new study by researchers at the University of Kelaniya in Sri Lanka and the University of British Columbia, explains that while most fishes die when stressed, tilapias survive in rough environments by stunting and carrying on with their lives in dwarf form.
"Tilapia and other fish in the Cichlidae family do not spawn 'earlier' than other fishes, as it is commonly believed," Upali S. Amarasinghe, lead author of the study and professor at the University of Kelaniya, said. "Rather, they are uncommonly tolerant of stressful ...