(Press-News.org) Researchers from the University of Minnesota Twin Cities College of Science and Engineering and Medical School have developed a unique head-mounted mini-microscope device that allows them to image complex brain functions of freely moving mice in real time over a period of more than 300 days.
The device, known as the mini-MScope, offers an important new tool for studying how neural activity from multiple regions of the outer part of the brain, called the cortex, contribute to behavior, cognition and perception. The groundbreaking study provides new insight into fundamental research that could improve human brain conditions such as concussions, autism, Alzheimer's, and Parkinson's disease, as well as better understanding the brain's role in addiction.
The research was published today in the peer-reviewed journal Nature Methods. The study authors will also present their research at the virtual 2021 OSA Biophotonics Congress: Optics in the Life Sciences on Thursday, April 15.
In the past, scientists have studied how neural activity in specific regions of the brain's cortex contribute to behavior, but it has been difficult to study activity from multiple cortical regions at once. For mice, even the simple task of moving a single whisker in response to a stimulus involves processing information in several cortical areas. Mice are often used to study the brain because they have many of the same brain structures and connectivity as humans.
"This device enables us to image most of the mouse's brain during free and unrestrained behaviors, whereas previous mesoscale imaging was usually done in immobile mice using devices like the MRI or two photon microscopes" said Suhasa Kodandaramaiah, the senior author of the study and University of Minnesota Benjamin Mayhugh Assistant Professor of Mechanical Engineering in the College of Science and Engineering. "This new device allows us to understand how different areas of the brain interact during complex behaviors where multiple areas of the brain are working together simultaneously. This opens up research into understanding how connectivity changes in diseased states, traumatic brain injury or addiction."
The new mini-MScope is a fluorescence microscope that can image an area about 10 millimeters by 12 millimeters and weighs about 3 grams. This allows holistic imaging of much of the mouse brain surface. The device is used for calcium imaging, a technique commonly used to monitor the electrical activity of the brain. The device mounted on the mouse's head captures images at near cellular level, making it possible to study connections between regions across the cortex.
The researchers created the miniaturized microscope using LEDs for illumination, miniature lenses for focusing and a complementary metal-oxide-semiconductor (CMOS) for capturing images. It includes interlocking magnets that let it be easily affixed to structurally realistic 3D-printed transparent polymer skulls, known as See-Shells, that the researchers developed in previous studies. When implanted into mice, the See-Shells create a window through which long-term microscopy can be performed. The new microscope can capture the brain activity of mice for almost a year.
The researchers demonstrated the mini-MScope by using it to image mouse brain activity in response to a visual stimulus to the eye, a vibrational stimulus to the hindlimb and a somatosensory stimulus presented to the whisker. They also created functional connectivity maps of the brain as a mouse wearing the head-mounted microscope interacted with another mouse. They saw that intracortical connectivity increased when the mouse engaged in social behaviors with the other mouse.
"Our team is creating a suite of tools that will enable us to access and interface with large parts of the cortex at high spatial and temporal resolution," said Mathew Rynes, a University of Minnesota biomedical engineering Ph.D. candidate who co-led the study. "This study shows that the mini-MScope can be used to study functional connectivity in freely behaving mice, making it an important contribution to this toolkit," Rynes added.
The team had to overcome several engineering challenges to create the device.
"To image the brain in freely behaving mice, the device had to be light-weight enough to be supported and carried by the mice," said Daniel Surinach, a recent University of Minnesota mechanical engineering master's degree graduate who also co-led the study. "Within this small range, we also needed to optimize optics, electrical and imaging hardware resolution, focusing, illumination designs to provide light to the brain for imaging, and other elements to get clear images of the mouse brain during natural and vigorous behaviors. We ended up designing and testing more than 175 unique prototypes to get the finalized device working!"
The researchers are now using the mini-MScope to investigate how cortical connectivity changes in a variety of behavioral paradigms, such as exploring a new space. They are also working with collaborators who are using the mini-MScope to study how cortical activity is altered when mice learn difficult motor tasks.
"This device allows us to study the brain in ways we could have never done before," said Kodandaramaiah, who also holds appointments in the University of Minnesota's Department of Biomedical Engineering and the Medical School. "For example, we can image the mouse's brain activity as it ebbs and flows during natural movement within its space, as it goes to sleep, and when it wakes up. This provides a lot of valuable information that will help us better understand the brain to help people with disease or injury to improve their lives."
The researchers said the next steps are to improve the resolution of the imaging and study the brain at even finer detail down to examining individual neurons.
INFORMATION:
In addition to Kodandaramaiah, Rynes, and Surinach, the research team included University of Minnesota College of Science and Engineering mechanical engineering researchers Samantha Linn, Vijay Rajendran, Judith Dominguez, Orestes Hadjistamolou, Zahra S Navabi, Leila Ghanbari, and Gregory W Johnson; University of Minnesota Medical School researcher Michael Laroque; and University of Lethbridge, Alberta, Canada researchers Mojtaba Nazari and Majid Mohajerani.
The research was primarily funded by the National Institutes of Health (NIH) National Institute for Neurological Disorders and Stroke with additional support from the NIH Brain Initiative, Minnesota's Discovery, Research, and InnoVation Economy (MnDRIVE) from the State of Minnesota, Minnesota Informatics Institute's (UMII) graduate fellowship, and the University of Minnesota's Diversity of Views and Experiences (DOVE) fellowship.
A study at the University of Chicago Medicine found U.S. women experienced increased incidence of health-related socioeconomic risks (HRSRs), such as food insecurity and interpersonal violence, early in the COVID-19 pandemic. This was associated with "alarmingly high rates" of mental health problems, including depression and anxiety. The research was published April 5 in the Journal of Women's Health.
Other studies have found evidence for higher rates of anxiety and depression and related issues, such as alcohol overuse, connected to the pandemic -- but this study is the first to link early pandemic-related changes in HRSRs to mental health effects ...
Researchers at the National Institute of Standards and Technology (NIST) and collaborators have demonstrated an atom-based sensor that can determine the direction of an incoming radio signal, another key part for a potential atomic communications system that could be smaller and work better in noisy environments than conventional technology.
NIST researchers previously demonstrated that the same atom-based sensors can receive commonly used communications signals. The capability to measure a signal's "angle of arrival" helps ensure the accuracy of radar and wireless communications, ...
RIVERSIDE, Calif. -- A team led by a biomedical scientist at the University of California, Riverside, has developed a new RNA-sequencing method-- "Panoramic RNA Display by Overcoming RNA Modification Aborted Sequencing," or PANDORA-seq -- that can help discover numerous modified small RNAs that were previously undetectable.
RNA plays a central role in decoding the genetic information in DNA to sustain an organism's life. It is generally known as the intermediate molecule used to synthesize proteins from DNA. Cells are full of RNA molecules in complex and diverse forms, two main types ...
Although stratospheric ozone protects us by filtering out the sun's ultraviolet radiation, tropospheric ozone is a harmful pollutant. A new study has shown that ozone in the lower layers of the atmosphere decreases crop yields in maize and changes the types of chemicals that are found inside the leaves.
Ozone is formed when nitrous oxide, released from industries and tail pipes of cars, is broken down by sunlight and chemically reacts to form ozone. Researchers at the University of Illinois Urbana-Champaign have been studying the effects of ozone pollution on crops for over 20 years at a unique facility where crops can be grown under real-world farm ...
WINSTON-SALEM, N.C. - April 5, 2021 - According to the American Cancer Society, a noninvasive breast cancer called ductal carcinoma in situ (DCIS) accounts for approximately one of every four new breast cancer cases in the United States. If left untreated, DCIS has the potential to evolve into invasive cancer, so many patients choose to have breast-conserving surgery or mastectomy after a diagnosis.
However, obtaining clear or negative margins -- no cancer cells in the outer edge of removed tissue -- is critical to mastectomy success as positive margins are associated with higher rates of recurrence.
A new study from Wake Forest School of Medicine suggests removing ...
A new study published in Indoor Air provides design-based solutions on how to best use ultraviolet germicidal irradiation (UVGI) to disinfect occupied rooms without harming individuals. This research was conducted by Dorit Aviv, assistant professor of architecture and director of the Thermal Architecture Lab at the University of Pennsylvania Stuart Weitzman School of Design, Penn visiting scholar Miaomiao Hou, and Jovan Pantelic, an air quality expert at Katholieke Universiteit Leuven.
Ultraviolet germicidal irradiation (UVGI) devices use short-wavelength ultraviolet ...
Palmer Amaranth is a high-impact agronomic weed species that has cost the United States agriculture industry billions of dollars since its discovery outside of its native range in the southwestern U.S. and northwestern Mexico. Over the last 20 years, it has moved further north, and now poses a major threat to corn, soybean, and cotton growers across the south and Midwest regions of the United States.
It is not legal to sell any kind of seed in Minnesota if the seed lot contains Palmer Amaranth. The problem is this particular invasive species--which has shown potential to wipe out up to 91% of corn yields, 68% of soybean yields, and 54% of cotton yields-- is difficult to visibly distinguish from ...
Scientists create stable nanosheets containing boron and hydrogen atoms with potential applications in nanoelectronics and quantum information technology.
What's thinner than thin? One answer is two-dimensional materials -- exotic materials of science with length and width but only one or two atoms in thickness. They offer the possibility of unprecedented boosts in device performance for electronic devices, solar cells, batteries and medical equipment.
In collaboration with Northwestern University and the University of Florida, scientists from the U.S. Department of Energy's (DOE) Argonne National Laboratory report in Science ...
How do we become a complex, integrated multicellular organism from a single cell?
While developmental biologists have long researched this fundamental question, Stanford University biologist and HHMI investigator Dominique Bergmann's recent work on the plant Arabidopsis thaliana has uncovered surprising answers.
In a new study, published April 5 in Developmental Cell, led by Bergmann and postdoctoral scholar Camila Lopez-Anido, researchers used single-cell RNA sequencing technologies to track genetic activity in nearly 20,000 cells as they formed the surface and inner parts of an Arabidopsis leaf. Through this highly detailed technique, the researchers captured ...
PHILADELPHIA - A team led by scientists at the Perelman School of Medicine at the University of Pennsylvania has illuminated the functions of mysterious structures in cells called "nuclear speckles," showing that they can work in partnership with a key protein to enhance the activities of specific sets of genes.
The discovery, which will be published on April 5 in Molecular Cell, is an advance in basic cell biology; the key protein it identifies as a working partner of speckles is best known as major tumor-suppressor protein, p53. This avenue of research may also lead to a better future understanding of cancers, and possibly better cancer treatments.
"This study shows that nuclear speckles work as major regulators of gene expression, and suggests that ...