(Press-News.org) Ultralight bosons are hypothetical particles whose mass is predicted to be less than a billionth the mass of an electron. They interact relatively little with their surroundings and have thus far eluded searches to confirm their existence. If they exist, ultralight bosons such as axions would likely be a form of dark matter, the mysterious, invisible stuff that makes up 85 percent of the matter in the universe.
Now, physicists at MIT's LIGO Laboratory have searched for ultralight bosons using black holes -- objects that are mind-bending orders of magnitude more massive than the particles themselves. According to the predictions of quantum theory, a black hole of a certain mass should pull in clouds of ultralight bosons, which in turn should collectively slow down a black hole's spin. If the particles exist, then all black holes of a particular mass should have relatively low spins.
But the physicists have found that two previously detected black holes are spinning too fast to have been affected by any ultralight bosons. Because of their large spins, the black holes' existence rules out the existence of ultralight bosons with masses between 1.3x10-13 electronvolts and 2.7x10-13 electronvolts -- around a quintillionth the mass of an electron.
The team's results, published today in Physical Review Letters, further narrow the search for axions and other ultralight bosons. The study is also the first to use the spins of black holes detected by LIGO and Virgo, and gravitational-wave data, to look for dark matter.
"There are different types of bosons, and we have probed one," says co-author Salvatore Vitale, assistant professor of physics at MIT. "There may be others, and we can apply this analysis to the growing dataset that LIGO and Virgo will provide over the next few years."
Vitale's co-authors are lead author Kwan Yeung (Ken) Ng, a graduate student in MIT's Kavli Institute for Astrophysics and Space Research, along with researchers at Utrecht University in the Netherlands and the Chinese University of Hong Kong.
A carousel's energy
Ultralight bosons are being searched for across a huge range of super-light masses, from 1x10-33 electronvolts to 1x10-6 electronvolts. Scientists have so far used tabletop experiments and astrophysical observations to rule out slivers of this wide space of possible masses. Since the early 2000s, physicists proposed that black holes could be another means of detecting ultralight bosons, due to an effect known as superradiance.
If ultralight bosons exist, they could interact with a black hole under the right circumstances. Quantum theory posits that at a very small scale, particles cannot be described by classical physics, or even as individual objects. This scale, known as the Compton wavelength, is inversely proportional to the particle mass.
As ultralight bosons are exceptionally light, their wavelength is predicted to be exceptionally large. For a certain mass range of bosons, their wavelength can be comparable to the size of a black hole. When this happens, superradiance is expected to quickly develop. Ultralight bosons are then created from the vacuum around a black hole, in quantities large enough that the tiny particles collectively drag on the black hole and slow down its spin.
"If you jump onto and then down from a carousel, you can steal energy from the carousel," Vitale says. "These bosons do the same thing to a black hole."
Scientists believe this boson slow-down can occur over several thousand years -- relatively quickly on astrophysical timescales.
"If bosons exist, we would expect that old black holes of the appropriate mass don't have large spins, since the boson clouds would have extracted most of it," Ng says. "This implies that the discovery of a black hole with large spins can rule out the existence of bosons with certain masses.
Spin up, spin down
Ng and Vitale applied this reasoning to black hole measurements made by LIGO, the Laser Interferometer Gravitational-wave Observatory, and its companion detector Virgo. The detectors "listen" for gravitational waves, or reverberations from far-off cataclysms, such as merging black holes, known as binaries.
In their study, the team looked through all 45 black hole binaries reported by LIGO and Virgo to date. The masses of these black holes -- between 10 and 70 times the mass of the sun -- indicate that if they had interacted with ultralight bosons, the particles would have been between 1x10-13 electronvolts and 2x10-11 electronvolts in mass.
For every black hole, the team calculated the spin that it should have if the black hole was spun down by ultralight bosons within the corresponding mass range. From their analysis, two black holes stood out: GW190412 and GW190517. Just as there is a maximum velocity for physical objects -- the speed of light -- there is a top spin at which black holes can rotate. GW190517 is spinning at close to that maximum. The researchers calculated that if ultralight bosons existed, they would have dragged its spin down by a factor of two.
"If they exist, these things would have sucked up a lot of angular momentum," Vitale says. "They're really vampires."
The researchers also accounted for other possible scenarios for generating the black holes' large spins, while still allowing for the existence of ultralight bosons. For instance, a black hole could have been spun down by bosons but then subsequently sped up again through interactions with the surrounding accretion disk -- a disk of matter from which the black hole could suck up energy and momentum.
"If you do the math, you find it takes too long to spin up a black hole to the level that we see here," Ng says. "So, we can safely ignore this spin-up effect."
In other words, it's unlikely that the black holes' high spins are due to an alternate scenario in which ultralight bosons also exist. Given the masses and high spins of both black holes, the researchers were able to rule out the existence of ultralight bosons with masses between 1.3x10-13 electronvolts and 2.7x10-13 electronvolts.
"We've basically excluded some type of bosons in this mass range," Vitale says. "This work also shows how gravitational-wave detections can contribute to searches for elementary particles."
INFORMATION:
This research was supported, in part, by the National Science Foundation.
Written by Jennifer Chu, MIT News Office
Little is known about azhdarchid pterosaurs, gigantic flying reptiles with impressive wingspans of up to 12 meters. Cousins of dinosaurs and the largest animals ever to fly, they first appeared in the fossil record in the Late Triassic about 225 million years ago and disappeared again at the end of the Cretaceous period about 66 million years ago. One of their most notable features for such a large flighted animal was a neck longer than that of a giraffe. Now, researchers report an unexpected discovery in the journal iScience on April 14: their thin neck vertebrae got their strength from an intricate internal structure unlike anything ...
Describing the genetic diversity of human populations is essential to improve our understanding of human diseases and their geographical distribution. However, the vast majority of genetic studies have been focused on populations of European ancestry, which represent only 16% of the global population. Scientists at the Institut Pasteur, Collège de France, and CNRS have looked at understudied human populations from the South Pacific, which are severely affected by a variety of diseases, including vector-borne infectious diseases such as Zika virus, dengue, and chikungunya, and metabolic diseases such as obesity and diabetes. Using genome sequencing of ...
In physics, things exist in "phases", such as solid, liquid, gas. When something crosses from one phase to another, we talk about a "phase transition" - think about water boiling into steam, turning from liquid to gas.
In our kitchens water boils at 100oC, and its density changes dramatically, making a discontinuous jump from liquid to gas. However, if we turn up the pressure, the boiling point of water also increases, until a pressure of 221 atmospheres where it boils at 374oC. Here, something strange happens: the liquid and gas merge into a single phase. Above this ...
Bruising caused by physical abuse is the most common injury to be overlooked or misdiagnosed as non-abusive before an abuse-related fatality or near-fatality in a young child. A refined and validated bruising clinical decision rule (BCDR), called TEN-4-FACESp, which specifies body regions on which bruising is likely due to abuse for infants and young children, may improve earlier recognition of cases that should be further evaluated for child abuse. Findings were published in the journal JAMA Network Open.
"Bruising on a young child is often dismissed as a minor injury, but depending on where the bruise appears, it can ...
What The Study Did: Data from the Ohio Department of Health were used to evaluate changes in drug overdose mortality in that state by type of drug and age of the user during the first seven months of the COVID-19 epidemic.
Authors: Janet M. Currie, Ph.D., of Princeton University in Princeton, New Jersey, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.7112)
Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions ...
What The Study Did: Researchers estimated the risk of suicide among nurses and physicians compared to the general population in the United States.
Authors: Matthew A. Davis, M.P.H., Ph.D., of the University of Michigan in Ann Arbor, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(10.1001/jamapsychiatry.2021.0154)
Editor's Note: The article includes conflict of interest disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding and support.
INFORMATION:
Media advisory: The ...
What The Study Did: The association between severity of eczema among children and risk of being diagnosed with a learning disability was investigated in this study.
Authors: Joy Wan, M.D., M.S.C.E., of the University of Pennsylvania Perelman School of Medicine in Philadelphia, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamadermatol.2021.0008)
Editor's Note: The article includes conflicts of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding and support.
INFORMATION:
Media ...
Chestnut Hill, Mass. (4/14/2021) -- Using abundant cobalt and a unique experimental approach to probe ways to speed a sluggish catalytic reaction to harvest hydrogen from water, researchers from Boston College and Yale University discovered a mechanistic switch in the oxygen evolution reaction, a significant step towards optimizing electrocatalysts for water splitting to produce clean energy.
The mechanism switches by varying the amount of voltage, or applied potential, the team reports in the journal Chem. At moderate potential, two oxygen atoms bound to the catalyst surface react to form the oxygen-oxygen ...
In the cell nucleus histones play a crucial role packaging DNA into chromatin. Histones are however very sticky to both DNA and RNA, so to ensure they are transported to the cell nucleus after synthesis and bind to the right portion of DNA to organize the chromatin, they are guarded by complexes of histone chaperones.
Histone chaperones are proteins that bind to histones to help protect them from non-specific binding events until they reach their goal. This process fails sometimes and histones get stuck during their supply to chromatin without any purpose.
In a study published in Molecular Cell, researchers have shown that the protein DNAJC9 holds an important role in ...
Reconfigurable materials can do amazing things. Flat sheets transform into a face. An extruded cube transforms into dozens of different shapes. But there's one thing a reconfigurable material has yet to be able to change: its underlying topology. A reconfigurable material with 100 cells will always have 100 cells, even if those cells are stretched or squashed.
Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a method to change a cellular material's fundamental topology at the microscale. The research is published in Nature.
"Creating ...