PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Suppression of COVID-19 waves reflects time-dependent social activity, not herd immunity

Scientists developed a model showing that a fragile, temporary state of immunity emerged during the early epidemic but got destroyed as people changed their social behaviors over time, leading to future waves of infection

Suppression of COVID-19 waves reflects time-dependent social activity, not herd immunity
2021-04-14
(Press-News.org) UPTON, NY--Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and the University of Illinois Urbana-Champaign (UIUC) have developed a new mathematical model for predicting how COVID-19 spreads. This model not only accounts for individuals' varying biological susceptibility to infection but also their levels of social activity, which naturally change over time. Using their model, the team showed that a temporary state of collective immunity--what they coined "transient collective immunity"--emerged during early, fast-paced stages of the epidemic. However, subsequent "waves," or surges in the number of cases, continued to appear because of changing social behaviors. Their results are published in the Proceedings of the National Academy of Sciences.

The COVID-19 epidemic reached the United States in early 2020, rapidly spreading across several states by March. To mitigate disease spread, states issued stay-at-home orders, closed schools and businesses, and put in place mask mandates. In major cities like New York City (NYC) and Chicago, the first wave ended in June. In the winter, a second wave broke out in both cities. Understanding why initial waves end and subsequent waves begin is key to being able to predict future epidemic dynamics.

Here's where modeling can help. But classical epidemiological models were developed almost 100 years ago. While these models are mathematically robust, they don't perfectly capture reality. One of their flaws is failing to account for the structure of person-to-person contact networks, which serve as channels for the spread of infectious diseases.

"Classical epidemiological models tend to ignore the fact that a population is heterogenous, or different, on multiple levels, including physiologically and socially," said Alexei Tkachenko, a physicist in the Theory and Computation Group at the Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility at Brookhaven Lab. "We don't all have the same susceptibility to infection because of factors such as age, preexisting health conditions, and genetics. Similarly, we don't have the same level of activity in our social lives. We differ in the number of close contacts we have and in how often we interact with them throughout different seasons. Population heterogeneity--these individual differences in biological and social susceptibility--is particularly important because it lowers the herd immunity threshold."

Herd immunity is the percentage of the population who must achieve immunity in order for an epidemic to end.

"Herd immunity is a controversial topic," said Sergei Maslov, a CFN user and professor and Bliss Faculty Scholar at UIUC, with faculty appointments in the Departments of Physics and Bioengineering and at the Carl R. Woese Institute for Genomic Biology. "Since early on in the COVID-19 pandemic, there have been suggestions of reaching herd immunity quickly, thereby ending local transmission of the virus. However, our study shows that apparent collective immunity reached in this way would not last."

"What was missing prior to this work was that people's social activity waxes and wanes, especially due to lockdowns or other mitigations," added Nigel Goldenfeld, Swanlund Professor of Physics and director of the NASA Astrobiology Institute for Universal Biology at UIUC. "So, a wave of the epidemic can seem to die away due to mitigation measures when the susceptible or more social groups collectively have been infected--what we call transient collective immunity. But once these measures are relaxed and people's social networks are renewed, another wave can start, as we've seen with states and countries opening up too soon, thinking the worst was behind them."

Ahmed Elbanna, a Donald Biggar Willett Faculty Fellow and professor of civil and environmental engineering at UIUC, noted transient collective immunity has profound implications for public policy.

"Mitigation measures, such as mask wearing and avoiding large gatherings, should continue until the true herd immunity threshold is achieved through vaccination," said Elbanna. "We can't outsmart this virus by forcing our way to herd immunity through widespread infection because the number of infected people and number hospitalized who may die would be too high."

The nuts and bolts of predictive modelling

Over the past year, the Brookhaven-UIUC team has been carrying out various projects related to a broader COVID-19 modeling effort. Previously, they modeled how the epidemic would spread through Illinois and the UIUC campus, and how mitigation efforts would impact that spread. Last May, they began this project to calculate the effect of population heterogeneity on the spread of COVID-19.

Several approaches already exist for modeling the effect of heterogeneity on epidemic dynamics, but they typically assume heterogeneity remains constant over time. So, for example, if you're not socially active today, you won't be socially active tomorrow or in the weeks and months ahead.

"Basic epidemiological models only have one characteristic time, called the generation interval or incubation period," said Tkachenko. "It refers to the time when you can infect another person after becoming infected yourself. For COVID-19, it's roughly five days. But that's only one timescale. There are other timescales over which people change their social behavior."

In this work, the team incorporated time variations in individual social activity into existing epidemiological models. While a complicated, multidimensional model is needed to describe each group of people with different susceptibilities to disease, they compressed this model into only three equations, developing a single parameter to capture biological and social sources of heterogeneity.

"We call this parameter the immunity factor, which tells you how much the reproduction number drops as susceptible individuals are removed from the population," explained Maslov.

The reproduction number indicates how transmissible an infectious disease is. Specifically, the quantity refers to how many people one infected person will in turn infect. To estimate the social contribution to the immunity factor, the team leveraged previous studies in which scientists actively monitored people's social behavior. They also looked at actual epidemic dynamics, determining the immunity factor most consistent with data on COVID-19-related hospitalizations, intensive care unit admissions, and daily deaths in NYC and Chicago. For example, when the susceptible number dropped by 10 percent during the early, fast-paced epidemic in NYC and Chicago, the reproduction number fell by 40 to 50 percent--corresponding to an estimated immunity factor of four to five.

"That's a fairly large immunity factor, but it's not representative of lasting herd immunity," said Tkachenko. "On a longer timescale, we estimate a much lower immunity factor of about two. The fact that a single wave stops doesn't mean you're safe. It can come back."

This temporary state of immunity arises because population heterogeneity is not permanent; people change their social behavior over time. For instance, individuals who self-isolated during the first wave--staying home, not having visitors over, ordering groceries online--subsequently start relaxing their behaviors. Any increase in social activity means additional exposure risk.

"The epidemic has been with us a year now," said Maslov. "It's important to understand why it has been here for such a long time. The gradual change in social behavior among individuals partially explains why plateaus and subsequent waves are occurring. For example, both cities avoided a summer wave but experienced a winter wave. We attribute the winter wave to two factors: the change in season and the waning of transient collective immunity."

With vaccination becoming more widespread, the team hopes we will be spared from another wave. In their most recent work, they are studying epidemic dynamics in more detail. For example, they are feeding statistics from "superspreader" events--gatherings where a single infected person causes a large outbreak among attendees--into the model. They are also applying their model to different regions across the country to explain overall epidemic dynamics from the end of lockdown to early March 2021.

INFORMATION:

This work was supported by the DOE Office of Science; University of Illinois System Office, the Office of the Vice-Chancellor for Research and Innovation, the Grainer College of Engineering, and the Department of Physics at UIUC; DOE Computational Science Graduate Fellowship; and National Science Foundation Faculty Early Career Development (CAREER) Program. This research was carried out as part of a CFN user program. The Illinois Department of Public Health, through a Data Use Agreement with Civis Analytics, supplied data for the calculations. The calculations were carried out on the Illinois Campus Cluster, a computing resource operated by the Illinois Campus Cluster Program in conjunction with the National Center for Supercomputing Applications, which is supported by funds from UIUC.

Brookhaven National Laboratory is supported by the U.S. Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Follow @BrookhavenLab on Twitter or find us on Facebook.


[Attachments] See images for this press release:
Suppression of COVID-19 waves reflects time-dependent social activity, not herd immunity

ELSE PRESS RELEASES FROM THIS DATE:

Why do some alloys become stronger at room temperature?

2021-04-14
An alloy is typically a metal that has a few per cent of at least one other element added. Some aluminium alloys have a seemingly strange property. "We've known that aluminium alloys can become stronger by being stored at room temperature - that's not new information," says Adrian Lervik, a physicist at the Norwegian University of Science and Technology (NTNU). The German metallurgist Alfred Wilm discovered this property way back in 1906. But why does it happen? So far the phenomenon has been poorly understood, but now Lervik and his colleagues from NTNU and SINTEF, the largest independent research institute in Scandinavia, have tackled that question. Lervik recently completed his doctorate at NTNU's Department of Physics. His work explains an important part of this ...

Air pollution may affect severity and hospitalization in COVID-19 patients

Air pollution may affect severity and hospitalization in COVID-19 patients
2021-04-14
Patients who have preexisting respiratory conditions such as asthma or chronic obstructive pulmonary disease (COPD) and live in areas with high levels of air pollution have a greater chance of hospitalization if they contract COVID-19, says a University of Cincinnati researcher. Angelico Mendy, MD, PhD, assistant professor of environmental and public health sciences, at the UC College of Medicine, looked at the health outcomes and backgrounds of 1,128 COVID-19 patients at UC Health, the UC-affiliated health care system in Greater Cincinnati. Mendy led a team of researchers in an individual-level study which used a statistical model to evaluate the association between long-term exposure to particulate matter less or equal to 2.5 micrometers -- it refers to a mixture of tiny particles and ...

Protein found to control drivers of normal growth and cancer

2021-04-14
Researchers have found a long-sought enzyme that prevents cancer by enabling the breakdown of proteins that drive cell growth, and that causes cancer when disabled. Publishing online in Nature on April 14, the new study revolves around the ability of each human cell to divide in two, with this process repeating itself until a single cell (the fertilized egg) becomes a body with trillions of cells. For each division, a cell must follow certain steps, most of which are promoted by proteins called cyclins. Led by researchers at NYU Grossman School of Medicine, the work revealed that an enzyme called AMBRA1 labels a key class of cyclins for destruction by cellular machines that break down proteins. The work finds that the enzyme's control of cyclins is essential ...

Backyard bird feeding sparks a songbird 'reverse migration'

2021-04-14
ITHACA, N.Y. - Eurasian Blackcaps are spunky and widespread warblers that breed across much of Europe. Many of them migrate south to the Mediterranean region and Africa after the breeding season. But thanks to a changing climate and an abundance of food resources offered by people across the United Kingdom and Ireland, some populations of Blackcaps have recently been heading north for the winter, spending the colder months in backyard gardens of the British Isles. New research published this week in Global Change Biology shows some of the ways that bird feeders, fruit-bearing plants, and a warming world are changing both the movements and the physiology of the Blackcaps that spend the winter in Great Britain and Ireland. "Many migratory birds are ...

Telling sunbathers what they don't want to hear: Tanning is bad

2021-04-14
COLUMBUS, Ohio - Most young women already know that tanning is dangerous and sunbathe anyway, so a campaign informing them of the risk should take into account their potential resistance to the message, according to a new study. Word choice and targeting a specific audience are part of messaging strategy, but there is also psychology at play, researchers say - especially when the message is telling people something they don't really want to hear. "A lot of thought goes into the content, but possibly less thought goes into the style," said Hillary Shulman, senior author of the study and an assistant ...

Significant spread of all coronavirus variants tracked in Houston area

Significant spread of all coronavirus variants tracked in Houston area
2021-04-14
Philadelphia, April 14, 2021 - In late 2020, several concerning SARS-CoV-2 variants emerged globally. They are believed to be more easily transmissible, and there is concern that some may reduce the effectiveness of antibody treatments and vaccines. An extensive genome sequencing program run by the Houston Methodist health system has identified all six of the currently identified SARS-CoV-2 variants in their patients. A new study appearing in The American Journal of Pathology, published by Elsevier, finds that the variants are widely spread across the Houston metropolitan area. "Before the SARS-CoV-2 virus arrived in Houston, we planned an integrated strategy to confront ...

Channel migration plays leading role in river network evolution, study finds

Channel migration plays leading role in river network evolution, study finds
2021-04-14
A new study by former University of Illinois Urbana-Champaign graduate student Jeffrey Kwang, now at the University of Massachusetts, Amherst; Abigail Langston, of Kansas State University; and Illinois civil and environmental engineering professor Gary Parker takes a closer look at the vertical and lateral – or depth and width – components of river erosion and drainage patterns. The study is published in the Proceedings of the National Academy of Sciences. “A tree’s dendritic structure exists to provide fresh ends for leaves to grow and collect as much light as possible,” Parker said. “If you chop off some branches, they will regrow in a dendritic pattern. ...

Scientists identify potential drug candidates for deadly pediatric leukemia

Scientists identify potential drug candidates for deadly pediatric leukemia
2021-04-14
LA JOLLA, CALIF. - April 14, 2021 - Scientists at Sanford Burnham Prebys Medical Discovery Institute have shown that two existing drug candidates--JAK inhibitors and Mepron--hold potential as treatments for a deadly acute myeloid leukemia (AML) subtype that is more common in children. The foundational study, published in the journal Blood, is a first step toward finding effective treatments for the hard-to-treat blood cancer. "While highly successful therapies have been found for other blood cancers, most children diagnosed with this AML subtype are still treated with harsh, toxic chemotherapies," says Ani Deshpande, Ph.D., assistant professor in Sanford Burnham Prebys' ...

Retracing his steps

2021-04-14
Half a century had passed, but UC Santa Barbara Professor Armand Kuris was sure he'd been here before. In fact, he was completely certain. After all, he had detailed notes of the location, written carefully in India ink when he was still a graduate student. This time, though, Kuris served as a seasoned mentor for several young researchers who hadn't even been born when he first visited the site. Truth be told, many of their parents hadn't yet been born. This was just one of many shorelines along the coast of the Pacific Northwest where the group was repeating ecological field work Kuris conducted in 1969 and 70. He teamed up with Assistant Professor Chelsea Wood of the University of Washington and her lab -- all parasite ...

How transcription factors work together in cancer formation

2021-04-14
A new study co-authored by University of Colorado Cancer Center researcher Srinivas Ramachandran, PhD, shows how DNA segments known as enhancers function in cells. The paper published last month in Molecular Cell highlighted the work from Ramachandran, along with Satyanarayan Rao, both part of the Department of Biochemistry and Molecular Genetics at the CU School of Medicine, and Kami Ahmad from the Fred Hutchinson Cancer Research Center. Enhancers are DNA sequences that drive cell-type-specific gene expression, developmental transitions, and cellular responses to external stimuli. They typically have multiple binding sites for transcription factors, which are proteins that help turn specific genes "on" or "off" by binding to nearby DNA. Ramachandran ...

LAST 30 PRESS RELEASES:

Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)

A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets

New scan method unveils lung function secrets

Searching for hidden medieval stories from the island of the Sagas

Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model

Neuroscience leader reveals oxytocin's crucial role beyond the 'love hormone' label

Twelve questions to ask your doctor for better brain health in the new year

Microelectronics Science Research Centers to lead charge on next-generation designs and prototypes

Study identifies genetic cause for yellow nail syndrome

New drug to prevent migraine may start working right away

Good news for people with MS: COVID-19 infection not tied to worsening symptoms

Department of Energy announces $179 million for Microelectronics Science Research Centers

Human-related activities continue to threaten global climate and productivity

Public shows greater acceptance of RSV vaccine as vaccine hesitancy appears to have plateaued

Unraveling the power and influence of language

Gene editing tool reduces Alzheimer’s plaque precursor in mice

TNF inhibitors prevent complications in kids with Crohn's disease, recommended as first-line therapies

Twisted Edison: Bright, elliptically polarized incandescent light

Structural cell protein also directly regulates gene transcription

Breaking boundaries: Researchers isolate quantum coherence in classical light systems

Brain map clarifies neuronal connectivity behind motor function

Researchers find compromised indoor air in homes following Marshall Fire

Months after Colorado's Marshall Fire, residents of surviving homes reported health symptoms, poor air quality

Identification of chemical constituents and blood-absorbed components of Shenqi Fuzheng extract based on UPLC-triple-TOF/MS technology

'Glass fences' hinder Japanese female faculty in international research, study finds

Vector winds forecast by numerical weather prediction models still in need of optimization

New research identifies key cellular mechanism driving Alzheimer’s disease

Trends in buprenorphine dispensing among adolescents and young adults in the US

Emergency department physicians vary widely in their likelihood of hospitalizing a patient, even within the same facility

Firearm and motor vehicle pediatric deaths— intersections of age, sex, race, and ethnicity

[Press-News.org] Suppression of COVID-19 waves reflects time-dependent social activity, not herd immunity
Scientists developed a model showing that a fragile, temporary state of immunity emerged during the early epidemic but got destroyed as people changed their social behaviors over time, leading to future waves of infection