The study provides more insight on the underlying immunobiology of mRNA vaccines, which could help shape future vaccine strategies.
"These results are encouraging for both short- and long-term vaccine efficacy, and this adds to our understanding of the mRNA vaccine immune response through the analysis of memory B cells," said senior author E. John Wherry, PhD, chair of the department of Systems Pharmacology and Translational Therapeutics and director of the Penn Institute of Immunology in the Perelman School of Medicine at the University of Pennsylvania.
The human immune response to vaccines and infections result in two major outcomes--the production of antibodies that provide rapid immunity and the creation of memory B cells, which assist in long-term immunity. This study represents one of the first to uncover how memory B cell responses differ after vaccination in people who previously experienced infection, compared to those who have not have COVID-19.
"Previous COVID-19 mRNA vaccine studies on vaccinated individuals have focused on antibodies more than memory B cells. Memory B cells are a strong predictor of future antibody responses, which is why it's vital to measure B cell responses to these vaccines," Wherry said. "This effort to examine memory B cells is important for understanding long-term protection and the ability to respond to variants."
The researchers recruited 44 healthy individuals who received either the BioNTech/Pfizer or Moderna mRNA COVID-19 vaccine at the University of Pennsylvania Health System. Of this cohort, 11 had a prior COVID-19 infection. Blood samples were collected for deep immune analyses four times prior to and after vaccine doses.
The data shows key differences in vaccine immune responses in COVID naïve versus COVID-19 recovered individuals. The findings suggest that only a single vaccine dose in individuals recovered from COVID-19 may be enough to induce a maximal immune response, based on both strong antibody and memory B cell responses. This is likely due to a primary immune response because of their natural infection.
In contrast, it took two vaccine doses to demonstrate considerable antibody and memory B cell responses for those who did not have COVID-19, underlying the importance of the two-dose mRNA vaccine schedule to achieve optimal levels of immunity.
These findings were also reflected in an analysis of antibodies against the D614G mutation and the B.1.351 South African variant of COVID-19. For those who did not have COVID-19, it took a second dose to get a robust enough immunity level against the mutation and variant, whereas those recovered from COVID-19 had a strong enough antibody response after one dose.
"This is important for us to keep in mind as we consider vaccination strategies in the future and potential viral variants," Wherry said. "We need to make sure people have the strongest memory B cell responses available. If circulating antibodies wane over time, our data suggests that durable memory B cells could provide a rapid source of protection against re-exposure to COVID-19, including variants."
The researchers also examined vaccine-induced side effects in relation to immune responses. While seen in a smaller cohort of 32 COVID naïve people, they found that those who experienced systemic side effects after receiving a vaccine dose--such as fever, chills, headache, and fatigue--had stronger post-vaccination serum antibodies, but not memory B cells. Although more data is needed and all subjects developed robust immunity, it is possible that inflammation and side effects early after vaccination could signal stronger immune reactions.
"Everyone has good responses to the vaccines. They work to protect people against COVID-19. But for those who may be worried about side effects, they are not necessarily a bad thing--they may actually be an indicator of an even better immune response," Wherry said.
The researchers are continuing larger-scale studies, which are necessary to fully examine the question of a one- or two-dose regimen in COVID-19-recovered individuals and to see how long the vaccine antibodies last. Wherry and his team are continuing to study the vaccine's effect on virus-specific T cell responses, another element of the body's immune response.
INFORMATION:
The study was facilitated by the Penn Immune Health Project, with funding from the NIH (AI105343, AI082630, AI108545, AI155577, AI149680, AI152236, HL143613, P30-AI0450080, T32 AR076951-01, T32 CA009140, T32 AI055400, U19AI082630), the Allen Institute for Immunology, Cancer Research Institute-Mark Foundation Fellowship, Chen Family Research Fund, the Parker Institute for Cancer Immunotherapy, the Penn Center for Research on Coronavirus and Other Emerging Pathogens, the University of Pennsylvania Perelman School of Medicine COVID Fund, the University of Pennsylvania Perelman School of Medicine 21st Century Scholar Fund, and a philanthropic gift from Jeffrey Lurie, Joel Embiid, Josh Harris, and David Blitzer.
Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $8.9 billion enterprise.
The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $496 million awarded in the 2020 fiscal year.
The University of Pennsylvania Health System's patient care facilities include: the Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center--which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report--Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; and Pennsylvania Hospital, the nation's first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Medicine at Home, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.
Penn Medicine is powered by a talented and dedicated workforce of more than 44,000 people. The organization also has alliances with top community health systems across both Southeastern Pennsylvania and Southern New Jersey, creating more options for patients no matter where they live.
Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2020, Penn Medicine provided more than $563 million to benefit our community.