PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Mapping performance variations to see how lithium-metal batteries fail

Using high-energy x-rays, scientists probed different points across a high-energy-density lithium-metal battery--of interest for long-range electric vehicles--and used the data to identify the main failure mechanism

Mapping performance variations to see how lithium-metal batteries fail
2021-04-19
(Press-News.org) UPTON, NY--Scientists have identified the primary cause of failure in a state-of-the-art lithium-metal battery, of interest for long-range electric vehicles. Using high-energy x-rays, they followed the cycling-induced changes at thousands of different points across the battery and mapped the variations in performance. At each point, they used the x-ray data to calculate the amount of cathode material and its local state of charge. These findings, combined with complementary electrochemical measurements, enabled them to determine the dominant mechanism driving the loss of battery capacity after many charge-discharge cycles. As they recently reported in Chemistry of Materials, depletion of the liquid electrolyte was the primary cause of failure. The electrolyte transports lithium ions between the rechargeable battery's two electrodes (anode and cathode) during each charge and discharge cycle.

"The big advantage of batteries with anodes made of lithium metal instead of graphite, the material typically used in today's batteries, is their high energy density," explained corresponding author Peter Khalifah, a joint appointee in the Chemistry Division at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and the Department of Chemistry at Stony Brook University. "Increasing the amount of energy that a battery material can store for a given mass is the best way to extend the driving range of electric vehicles."

Since 2017, the Battery500 Consortium--a group of national labs and universities--has been working to develop next-generation lithium-metal anodes with an energy density three times higher than that of current automotive batteries. However, getting lithium metal to work well as an anode in a continually cycling rechargeable battery with a high energy density is extremely challenging. Lithium metal is very reactive, so more and more of it degrades as the battery cycles. Over time, these degradation reactions consume other key battery parts, like the liquid electrolyte.

Early on in their development, high-energy-density lithium-metal anodes had a very short lifetime, typically 10 cycles or less. Battery500 Consortium researchers improved this lifetime to 200 cycles for the battery cell studied in this work and, more recently, to 400 cycles in 2020. Ultimately, the consortium seeks to achieve lifetimes of 1,000 cycles or more to meet electric vehicle needs.

"How can we make high-energy-density lithium-metal batteries that cycle for a longer time?" said Khalifah. "One way of answering this question is to understand the failure mechanism in a realistic "pouch cell" battery. That's where our work, supported by the Battery500 Consortium, comes in."

Widely used in industrial applications, a pouch cell is a sealed rectangular-shaped battery, which uses space much more efficiently than cylindrical cells powering household electronics. Thus, it's optimal for packing inside vehicles. In this study, scientists from DOE's Pacific Northwest National Laboratory (PNNL) used PNNL's Advanced Battery Facility to fabricate lithium-metal batteries in a prototype pouch cell geometry with multiple layers.

Next, scientists from DOE's Idaho National Laboratory (INL) performed electrochemical testing on one of the multilayer pouch cells. They found only about 15 percent of the cell's capacity was lost over the first 170 cycles, but 75 percent was lost over the next 25 cycles. To understand this rapid capacity loss near the end of the battery's life, they extracted one of the cell's seven cathode layers and sent it to Brookhaven Lab for studies at the X-ray Powder Diffraction (XPD) beamline of the National Synchrotron Light Source II (NSLS-II).

In XPD, x-rays striking a sample only reflect at certain angles, producing a characteristic pattern. This diffraction pattern provides information on many aspects of the sample's structure, including the volume of its unit cell--the smallest repeating portion of the structure--and the positions of atoms within the unit cell.

Though the team primarily wanted to learn about the lithium-metal anode, its x-ray diffraction pattern is weak (because lithium has few electrons) and doesn't change much during battery cycling (staying as lithium metal). So, they indirectly probed changes in the anode by studying closely related changes in the lithium nickel manganese cobalt oxide (NMC) cathode, whose diffraction pattern is much stronger.

"The cathode serves as a "reporter" for the anode," explained Khalifah. "If the anode starts to fail, its problems will be mirrored in the cathode because the nearby regions of the cathode will be unable to effectively take up and release lithium ions."

The XPD beamline played a critical role in the experiment. With their high energy, the x-rays at this beamline can completely penetrate through battery cells, even those a few millimeters thick. The beam's high intensity and large two-dimensional area detector enabled the scientists to rapidly collect high-quality diffraction data for thousands of points across the battery.

"In this country, NSLS-II is only one of two x-ray synchrotrons suitable for high-energy diffraction studies," explained Khalifah. "For each point, we got a high-resolution diffraction pattern in about a second, allowing us to map the entire area of the battery in two hours--more than 100 times faster than if the x-rays were generated using a conventional laboratory x-ray source."

The first quantity they mapped was the state of charge (SOC)--the amount of energy remaining in the battery compared to the energy it had when it was "full"--for the single cathode layer. A 100-percent SOC means the battery is fully charged, having as much energy as it can. With battery usage, this percentage drops. For example, a laptop showing 80-percent power is at an 80-percent SOC. In chemistry terms, SOC corresponds to the lithium content in the cathode, where lithium is reversibly inserted and removed during cycling. As lithium is removed, the cathode's unit cell volume shrinks. This volume can be easily determined from x-ray diffraction measurements, which are therefore sensitive to the local SOC at each point. Any local regions where performance is degrading will have different SOCs from the rest of the cathode.

The SOC maps revealed three "hotspots," each a few millimeters in diameter, where the local performance was much worse than that of the rest of the cell. Only a portion of the NMC cathode in the hotspots had trouble cycling; the rest remained synchronized with the cell. This finding suggested the battery capacity loss was due to partial destruction of the liquid electrolyte, as loss of the electrolyte will "freeze" the battery at its current SOC.

Other possible reasons for the battery capacity loss--consumption of the lithium-metal anode or gradual loss of lithium ions or electronic conductivity as degradation products form on the electrode surface--would not lead to the simultaneous presence of active and inactive NMC cathode in the hotspots. Follow-up experiments led by INL team members on smaller battery coin cells designed to intentionally fail through electrolyte depletion exhibited the same behavior as this large pouch cell, confirming the failure mechanism.

"Electrolyte depletion was the failure mechanism most consistent with the synchrotron x-ray and electrochemistry data," said Khalifah. "In many regions of the cell, we saw the electrolyte was partially depleted, so ion transport became more difficult but not impossible. But in the three hotspots, the electrolyte largely ran out, so cycling became impossible."

In addition to pinpointing the location of the hotspots where failure was occurring most rapidly, the synchrotron x-ray diffraction studies also revealed why failure was occurring there by providing the amount of NMC present at each position on the cathode. Regions with the worst failure typically had smaller amounts of NMC than the rest of the cell. When less of the NMC cathode is present, that part of the battery charges and discharges more quickly and completely, causing the electrolyte to be consumed more rapidly and accelerating its eventual failure in these regions. Even small reductions in the cathode amount (five percent or less) can accelerate failure. Therefore, improving manufacturing processes to produce more uniform cathodes should lead to longer-lasting batteries.

"This work is a great example of a successful collaboration among BNL, INL, and PNNL by using our different expertise in energy storage," said Jie Xiao, group leader of PNNL's battery research program.

"The results from this study and other Battery500 activities clearly show the benefit of using capabilities from across the DOE complex to drive advancement in energy storage technologies," added Eric Dufek, department manager for INL's Energy Storage and Advanced Vehicle Department.

In future studies, the team plans to map the changes occurring while the battery charges and discharges.

"In this study, we looked at a single snapshot of the battery near the end of its lifetime," said Khalifah. "One important result was demonstrating how the technique has sufficient sensitivity that we should be able to apply it to operating batteries. If we can collect diffraction data while the battery cycles, we'll get a movie of how all the different parts change over time. This information will provide a more complete picture of how failure happens and, ultimately, enable us to design higher-performance batteries."

INFORMATION:

This work was supported by the DOE Office of Science and Assistant Secretary for Energy Efficiency and Renewable Energy, DOE Vehicle Technologies Office, through the Advanced Battery Materials Research Program (Battery500 Consortium). NSLS-II is a DOE Office of Science User Facility.

Brookhaven National Laboratory is supported by the U.S. Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Follow @BrookhavenLab on Twitter or find us on Facebook.


[Attachments] See images for this press release:
Mapping performance variations to see how lithium-metal batteries fail

ELSE PRESS RELEASES FROM THIS DATE:

MIPT and Harvard researchers grow stem cells to cure glaucoma

MIPT and Harvard researchers grow stem cells to cure glaucoma
2021-04-19
A joint research carried out by MIPT scientists and Harvard researchers have presented retinal cells that can integrate into the retina. This is the first successful attempt to transplant ganglion cells (retinal neurons that are destroyed by glaucoma) derived from stem cells in a lab setting. Scientists tested the technology in mice and established that the cells successfully integrated and survived for a year. In the future, the researchers plan to create specialized cell banks, which will permit individual, tailored therapy for each patient. The world's first successful attempt to grow and transplant ...

Patients who are obese or overweight are at risk for a more severe course of COVID-19

2021-04-19
COVID-19 patients who are overweight or obese are more likely to develop a more severe infection than patients of healthy weight, and they require oxygen and invasive mechanical ventilation more often. There is no increased risk of death . These conclusions, for which more than 7,000 patients were studied, appear from international research in eleven countries, including the Netherlands (Radboud university medical center). The study, led by Australian researchers, examined over 7000 patients from eleven different countries who were admitted to 18 hospitals. Of this group, over a third (34.8%) were overweight and almost a third (30.8%) were obese. COVID-19 patients with obesity required ...

Northern Red Sea corals live close to the threshold of resistance to cold temperatures

Northern Red Sea corals live close  to the threshold of resistance to cold temperatures
2021-04-19
Coral reefs are one of the most biologically diverse ecosystems on earth. In the northern Red Sea and Gulf of Aqaba corals also have exceptionally high tolerance to increasing seawater temperatures, now occurring as a consequence of global warming. This characteristic led coral reef scientists to designate this region as a potential coral reef refuge in the face of climate change - a reef where corals may survive longer than others that are being lost at an alarming rate due to human pressures. However, global climate change will also result in more variable weather patterns, including extreme cold periods. Some researchers predict that the Red Sea region is entering a cooling phase. Therefore, researchers from Bar-Ilan University and ...

Making spaces on the high street for clothing repairs

2021-04-19
Making space in high street shops for people to repair clothes could mend the damage caused by fast fashion and transform sewing into a wellbeing activity, experts say. More resources and opportunities for people to embrace slow fashion could also save people money, help them learn new skills and create new business opportunities. A new study suggests a variety of ways in which consumers might be encouraged to change their clothing purchasing behaviour, depending on their personality traits. One way to do this might be by marketing making and mending expertise as the "hipster's' equivalent of a spa day". Fast fashion has emerged in the last few decades as clothes have become cheaper, less durable and are purchased more frequently. This has resulted in severe negative environmental ...

Researchers use laser paintbrush to create miniature masterpieces

Researchers use laser paintbrush to create miniature masterpieces
2021-04-19
WASHINGTON -- Researchers are blurring the lines between science and art by showing how a laser can be used to create artistic masterpieces in a way that mirrors classical paints and brushes. The new technique not only creates paint-like strokes of color on metal but also offers a way to change or erase colors. "We developed a way to use a laser to create localized color on a metallic canvas using a technique that heats the metal to the point where it evaporates," said research team leader Vadim Veiko from ITMO University in Russia. "With this approach, an artist can create miniature art that conveys complex meaning not only through shape and color but also through various laser-induced microstructures on the ...

Many Americans say they would support COVID-19 vaccine mandates

2021-04-19
UNIVERSITY PARK, Pa. -- As vaccines that help protect against COVID-19 become available for more people across the United States, questions have been raised about whether institutions like schools and universities should require their students and staff to become vaccinated. A new study by Simon Haeder, assistant professor of public policy at Penn State, found that a majority of those surveyed supported mandates that required students and teachers to be vaccinated against COVID-19. However, more people supported broader vaccine mandates that don't ...

Research sheds new light on pancreatic cancer metastasis

Research sheds new light on pancreatic cancer metastasis
2021-04-19
OKLAHOMA CITY -- With an overall survival rate of 9% for those diagnosed, pancreatic cancer remains exceedingly difficult to treat. However, the patient's primary tumor typically isn't what leads to death - it is the cancer's ability to evade detection and metastasize to other organs. A team of researchers at the OU College of Medicine has published a new study in the journal Gastroenterology, the world's leading publication on GI tract disease, that sheds new light on the ability of pancreatic cancer cells to spread throughout the body. Understanding why metastasis occurs is crucial for developing a therapeutic strategy to stop the spread. The study, led by scientist ...

Global street drug supply and its effects on high-risk groups for COVID-19

2021-04-19
The composition of the street drugs heroin and cocaine has dramatically changed at alarming speeds across the globe. No longer are these street drugs cut with benign materials such as lactose but now cut with up to 17 or more pharmaceutically active and potentially toxic adulterants. A drug user may buy cocaine today but end up with a drug cocktail more dangerous then what was bought and assumed was cocaine. This has a profound effect on public health and safety as well as on the individual street drug users during the COVID-19 pandemic. Selected by the Editor-in-Chief, Dr. Kenneth Blum as the Editor's Choice in the May 2021 issue of Current Psychopharmacology (CPSP), this work examined the alarming addition of multiple pharmaceutically active substances collectively ...

Scientists find Galapagos volcano could help forecast future eruptions

Scientists find Galapagos volcano could help forecast future eruptions
2021-04-19
MIAMI--The Galápagos Islands have played a historic role since Charles Darwin's visit onboard the HMS Beagle in 1835. Today, a team of scientists, including from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, studied a large eruption in the archipelago to get new insights into how volcanoes behave and could help forecast future events. The study gives the first detailed description of a volcanic eruption from Sierra Negra found on Isla Isabela - the largest of the Galápagos Islands and home to nearly 2,000 people. The findings, published in Nature Communications, reveal how the volcano inflated and fractured before it erupted and captures a new level of detail for any eruption from a volcano on the islands. Networks ...

Study finds humans are directly influencing wind and weather over North Atlantic

Study finds humans are directly influencing wind and weather over North Atlantic
2021-04-19
MIAMI--A new study led by scientists at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science provides evidence that humans are influencing wind and weather patterns across the eastern United States and western Europe by releasing CO2 and other pollutants into Earth's atmosphere. In the new paper, published in the journal npj Climate and Atmospheric Science, the research team found that changes in the last 50 years to an important weather phenomenon in the North Atlantic--known as the North Atlantic Oscillation--can be traced back to human activities that impact the climate system. "Scientists have long understood that human actions are warming the planet," said the study's lead author Jeremy ...

LAST 30 PRESS RELEASES:

Scientists unlock secrets behind flowering of the king of fruits

Texas A&M researchers illuminate the mysteries of icy ocean worlds

Prosthetic material could help reduce infections from intravenous catheters

Can the heart heal itself? New study says it can

Microscopic discovery in cancer cells could have a big impact

Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer

Breakthrough new material brings affordable, sustainable future within grasp

How everyday activities inside your home can generate energy

Inequality weakens local governance and public satisfaction, study finds

Uncovering key molecular factors behind malaria’s deadliest strain

UC Davis researchers help decode the cause of aggressive breast cancer in women of color

Researchers discovered replication hubs for human norovirus

SNU researchers develop the world’s most sensitive flexible strain sensor

Tiny, wireless antennas use light to monitor cellular communication

Neutrality has played a pivotal, but under-examined, role in international relations, new research shows

Study reveals right whales live 130 years — or more

Researchers reveal how human eyelashes promote water drainage

Pollinators most vulnerable to rising global temperatures are flies, study shows

DFG to fund eight new research units

Modern AI systems have achieved Turing's vision, but not exactly how he hoped

Quantum walk computing unlocks new potential in quantum science and technology

Construction materials and household items are a part of a long-term carbon sink called the “technosphere”

First demonstration of quantum teleportation over busy Internet cables

Disparities and gaps in breast cancer screening for women ages 40 to 49

US tobacco 21 policies and potential mortality reductions by state

AI-driven approach reveals hidden hazards of chemical mixtures in rivers

Older age linked to increased complications after breast reconstruction

ESA and NASA satellites deliver first joint picture of Greenland Ice Sheet melting

Early detection model for pancreatic necrosis improves patient outcomes

Poor vascular health accelerates brain ageing

[Press-News.org] Mapping performance variations to see how lithium-metal batteries fail
Using high-energy x-rays, scientists probed different points across a high-energy-density lithium-metal battery--of interest for long-range electric vehicles--and used the data to identify the main failure mechanism