PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Science's breakthrough of the year: The first quantum machine

A mechanical device that operates in the quantum realm tops the journal's list of advances in 2010

2010-12-17
(Press-News.org) Until this year, all human-made objects have moved according to the laws of classical mechanics. Back in March, however, a group of researchers designed a gadget that moves in ways that can only be described by quantum mechanics—the set of rules that governs the behavior of tiny things like molecules, atoms, and subatomic particles. In recognition of the conceptual ground their experiment breaks, the ingenuity behind it and its many potential applications, Science has called this discovery the most significant scientific advance of 2010.

Physicists Andrew Cleland and John Martinis from the University of California at Santa Barbara and their colleagues designed the machine—a tiny metal paddle of semiconductor, visible to the naked eye—and coaxed it into dancing with a quantum groove. First, they cooled the paddle until it reached its "ground state," or the lowest energy state permitted by the laws of quantum mechanics (a goal long-sought by physicists). Then they raised the widget's energy by a single quantum to produce a purely quantum-mechanical state of motion. They even managed to put the gadget in both states at once, so that it literally vibrated a little and a lot at the same time—a bizarre phenomenon allowed by the weird rules of quantum mechanics.

Science and its publisher, AAAS, the nonprofit science society, have recognized this first quantum machine as the 2010 Breakthrough of the Year. They have also compiled nine other important scientific accomplishments from this past year into a top ten list, appearing in a special news feature in the journal's 17 December 2010 issue. Additionally, Science news writers and editors have chosen to spotlight 10 "Insights of the Decade" that have transformed the landscape of science in the 21st Century.

"This year's Breakthrough of the Year represents the first time that scientists have demonstrated quantum effects in the motion of a human-made object," said Adrian Cho, a news writer for Science. "On a conceptual level that's cool because it extends quantum mechanics into a whole new realm. On a practical level, it opens up a variety of possibilities ranging from new experiments that meld quantum control over light, electrical currents and motion to, perhaps someday, tests of the bounds of quantum mechanics and our sense of reality."

The quantum machine proves that the principles of quantum mechanics can apply to the motion of macroscopic objects, as well as atomic and subatomic particles. It provides the key first step toward gaining complete control over an object's vibrations at the quantum level. Such control over the motion of an engineered device should allow scientists to manipulate those minuscule movements, much as they now control electrical currents and particles of light. In turn, that capability may lead to new devices to control the quantum states of light, ultra-sensitive force detectors and, ultimately, investigations into the bounds of quantum mechanics and our sense of reality. (This last grand goal might be achieved by trying to put a macroscopic object in a state in which it's literally in two slightly different places at the same time—an experiment that might reveal precisely why something as big as a human can't be in two places at the same time.)

"Mind you, physicists still haven't achieved a two-places-at-once state with a tiny object like this one," said Cho. "But now that they have reached the simplest state of quantum motion, it seems a whole lot more obtainable—more like a matter of 'when' than 'if.'"

Science's list of the nine other groundbreaking achievements from 2010 follows.

Synthetic Biology: In a defining moment for biology and biotechnology, researchers built a synthetic genome and used it to transform the identity of a bacterium. The genome replaced the bacterium's DNA so that it produced a new set of proteins—an achievement that prompted a Congressional hearing on synthetic biology. In the future, researchers envision synthetic genomes that are custom-built to generate biofuels, pharmaceuticals or other useful chemicals.

Neandertal Genome: Researchers sequenced the Neandertal genome from the bones of three female Neandertals who lived in Croatia sometime between 38,000 and 44,000 years ago. New methods of sequencing degraded fragments of DNA allowed scientists to make the first direct comparisons between the modern human genome and that of our Neandertal ancestors.

HIV Prophylaxis: Two HIV prevention trials of different, novel strategies reported unequivocal success: A vaginal gel that contains the anti-HIV drug tenofovir reduced HIV infections in women by 39 percent and an oral pre-exposure prophylaxis led to 43.8 fewer HIV infections in a group of men and transgender women who have sex with men.

Exome Sequencing/Rare Disease Genes: By sequencing just the exons of a genome, or the tiny portion that actually codes for proteins, researchers who study rare inherited diseases caused by a single, flawed gene were able to identify specific mutations underlying at least a dozen diseases.

Molecular Dynamics Simulations: Simulating the gyrations that proteins make as they fold has been a combinatorial nightmare. Now, researchers have harnessed the power of one of the world's most powerful computers to track the motions of atoms in a small, folding protein for a length of time 100 times longer than any previous efforts.

Quantum Simulator: To describe what they see in the lab, physicists cook up theories based on equations. Those equations can be fiendishly hard to solve. This year, though, researchers found a short-cut by making quantum simulators—artificial crystals in which spots of laser light play the role of ions and atoms trapped in the light stand in for electrons. The devices provide quick answers to theoretical problems in condensed matter physics and they might eventually help solve mysteries such as superconductivity.

Next-Generation Genomics: Faster and cheaper sequencing technologies are enabling very large-scale studies of both ancient and modern DNA. The 1,000 Genomes Project, for example, has already identified much of the genome variation that makes us uniquely human—and other projects in the works are set to reveal much more of the genome's function.

RNA Reprogramming: Reprogramming cells—turning back their developmental clocks to make them behave like unspecialized "stem cells" in an embryo—has become a standard lab technique for studying diseases and development. This year, researchers found a way to do it using synthetic RNA. Compared with previous methods, the new technique is twice as fast, 100 times as efficient and potentially safer for therapeutic use.

The Return of the Rat: Mice rule the world of laboratory animals, but for many purposes researchers would rather use rats. Rats are easier to work with and anatomically more similar to human beings; their big drawback is that methods used to make "knockout mice"—animals tailored for research by having specific genes precisely disabled—don't work for rats. A flurry of research this year, however, promises to bring "knockout rats" to labs in a big way.

Finally, to celebrate the end of the current decade, Science news reporters and editors have taken a step back from their weekly reporting to take a broader look at 10 of the scientific insights that have changed the face of science since the dawn of the new millennium. A list of these 10 "Insights of the Decade" follows.

The Dark Genome: Genes used to get all the glory. Now, however, researchers recognize that these protein-coding regions of the genome account for just 1.5 percent of the whole. The rest of the genome, including small coding and non-coding RNAs—previously written off as "junk"—is proving to be just as important as the genes.

Precision Cosmology: Over the past decade, researchers have deduced a very precise recipe for the content of the universe, which consists of ordinary matter, dark matter and dark energy; as well as instructions for putting it all together. These advances have transformed cosmology into a precision science with a standard theory that now leaves very little wiggle room for other ideas.

Ancient Biomolecules: The realization that "biomolecules" like ancient DNA and collagen can survive for tens of thousands of years and provide important information about long-dead plants, animals and humans has provided a boon for paleontology. Analysis of these tiny time machines can now reveal anatomical adaptations that skeletal evidence simply can't provide, such as the color of a dinosaur's feathers or how woolly mammoths withstood the cold.

Water on Mars: Half a dozen missions to Mars over the past decade have provided clear evidence that the Red Planet once harbored enough water—either on it or just inside it—to alter rock formations and, possibly, sustain life. This Martian water was probably present around the time that life was beginning to appear on Earth, but there is still enough moisture on Mars today to encourage scientists seeking living, breathing microbes.

Reprogramming Cells: During the past decade, the notion that development is a one-way street has been turned on its head. Now, researchers have figured out how to "reprogram" fully developed cells into so-called pluripotent cells that regain their potential to become any type of cell in the body. This technique has already been used to make cell lines from patients with rare diseases, but ultimately, scientists hope to grow genetically matched replacement cells, tissues and organs.

The Microbiome: A major shift in the way we view the microbes and viruses that call the human body home has led researchers to the concept of the microbiome—or the collective genomes of the host and the other creatures that live on or inside it. Since 90 percent of the cells in our bodies are actually microbial, scientists are beginning to understand how significantly microbial genes can affect how much energy we absorb from our foods and how our immune systems respond to infections.

Exoplanets: In the year 2000, researchers were aware of just 26 planets outside our solar system. By 2010, that number had jumped to 502—and still counting. With emerging technologies, astronomers expect to find abundant Earth-like planets in the universe. But for now, the sizes and orbits of larger planets already discovered are revolutionizing scientists' understanding of how planetary systems form and evolve.

Inflammation: Not long ago, inflammation was known as the simple sidekick to our healing machinery, briefly setting in to help immune cells rebuild tissue damage caused by trauma or infection. Today, however, researchers believe that inflammation is also a driving force behind the chronic diseases that will eventually kill nearly all of us, including cancer, Alzheimer's disease, atherosclerosis, diabetes and obesity.

Metamaterials: By synthesizing materials with unconventional and tunable optical properties, physicists and engineers have pioneered new ways to guide and manipulate light, creating lenses that defy the fundamental limits on resolution. They've even begun constructing "cloaks" that can make an object invisible.

Climate Change: Over the past decade, researchers have solidified some fundamental facts surrounding global climate change: The world is warming, humans are behind the warming and the natural processes of the Earth are not likely to slow that warming. But, the next 10 years will determine how scientists and policymakers proceed with this vital information.

### On the afternoon of Thursday, December 16, the Breakthrough of the Year articles, Insights of the Decade articles, plus a related editorial by Bruce Alberts, Science's editor-in-chief, and related multimedia will be available at http://www.sciencemag.org/special/insights2010/.

The American Association for the Advancement of Science (AAAS) is the world's largest general scientific society, and publisher of the journal, Science (www.sciencemag.org) as well as Science Translational Medicine (www.sciencetranslationalmedicine.org) and Science Signaling (www.sciencesignaling.org). AAAS was founded in 1848, and includes some 262 affiliated societies and academies of science, serving 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world, with an estimated total readership of 1 million. The non-profit AAAS (www.aaas.org) is open to all and fulfills its mission to "advance science and serve society" through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!, www.eurekalert.org, the premier science-news Web site, a service of AAAS.


ELSE PRESS RELEASES FROM THIS DATE:

Computer memory takes a spin

Computer memory takes a spin
2010-12-17
SALT LAKE CITY, Dec. 16, 2010 – University of Utah physicists stored information for 112 seconds in what may become the world's tiniest computer memory: magnetic "spins" in the centers or nuclei of atoms. Then the physicists retrieved and read the data electronically – a big step toward using the new kind of memory for both faster conventional and superfast "quantum" computers. "The length of spin memory we observed is more than adequate to create memories for computers," says Christoph Boehme (pronounced Boo-meh), an associate professor ...

Why humans are more sensitive to certain viruses: Primate immune system differences identified

2010-12-17
The greater susceptibility of humans to certain infectious diseases when compared to other primates could be explained by species-specific changes in immune signaling pathways, a University of Chicago study finds. The first genome-wide, functional comparison of genes regulated by the innate immune system in three primate species discovers potential mediators of differences in disease susceptibility among primates. These findings are published on December 16 in the open-access journal PLoS Genetics. Humans are more sensitive than chimpanzees to the severe effects of certain ...

Structural distortions emerge from nothing at the nanoscale

2010-12-17
December 16, 2010 - Scientists have discovered that a class of materials known to convert heat to electricity and vice versa behaves quite unexpectedly at the nanoscale in response to changes in temperature. The discovery - described in the December 17, 2010, issue of Science - is a new "opposite-direction" phase transition that helps explain the strong thermoelectric response of these materials. It may also help scientists identify other useful thermoelectrics, and could further their application in capturing energy lost as heat, for example, in automotive and factory ...

Using digitized books as 'cultural genome,' researchers unveil quantitative approach to humanities

2010-12-17
CAMBRIDGE, Mass. -- Researchers have created a powerful new approach to scholarship, using approximately 4 percent of all books ever published as a digital "fossil record" of human culture. By tracking the frequency with which words appear in books over time, scholars can now precisely quantify a wide variety of cultural and historical trends. The four-year effort, led by Harvard University's Jean-Baptiste Michel and Erez Lieberman Aiden, is described this week in the journal Science. The team, comprising researchers from Harvard, Google, Encyclopaedia Britannica, ...

Age doesn't matter: New genes are as essential as ancient ones

2010-12-17
New genes that have evolved in species as little as one million years ago – a virtual blink in evolutionary history – can be just as essential for life as ancient genes, startling new research has discovered. Evolutionary biologists have long proposed that the genes most important to life are ancient and conserved, handed down from species to species as the "bread and butter" of biology. New genes that arise as species split off from their ancestors were thought to serve less critical roles – the "vinegar" that adds flavor to the core genes. But when nearly 200 new ...

Light dawns on dark gamma-ray bursts

Light dawns on dark gamma-ray bursts
2010-12-17
Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the ...

Most Medicare stroke patients rehospitalized or dead within year

2010-12-17
Nearly two-thirds of Medicare beneficiaries discharged from hospitals after ischemic stroke die or are readmitted within one year, researchers report in Stroke: Journal of the American Heart Association. Stroke is the second leading cause of hospital admissions among older adults in the United States, according to American Heart Association/American Stroke Association statistics. Ischemic stroke, which occurs as a result of an obstruction within a blood vessel supplying blood to the brain, accounts for 87 percent of all strokes. Only a few contemporary studies have ...

Most Medicare stroke patients die or are rehospitalized within year after discharge

2010-12-17
A UCLA-led has study found that after leaving the hospital, nearly two-thirds of Medicare beneficiaries hospitalized for acute ischemic stroke either died or were rehospitalized within a year. The findings point to an opportunity for more quality-of-care initiatives to improve stroke care, especially in transitioning to home, stroke rehabilitation and outpatient care. The study, which appears online Dec. 16 in Stroke, a journal of the American Heart Association, also found that hospital mortality and readmission rates varied widely nationwide, indicating there ...

Mount Sinai researchers develop mouse model to help find how a gene mutation leads to autism

2010-12-17
Researchers from Mount Sinai School of Medicine have found that when one copy of the SHANK3 gene in mice is missing, nerve cells do not effectively communicate and do not show cellular properties associated with normal learning. This discovery may explain how mutations affecting SHANK3 may lead to autism spectrum disorders (ASDs). The research is currently published in Molecular Autism. "We know that SHANK3 mutation plays a central, causative role in some forms of autism spectrum disorders, but wanted to learn more about how it does this," said Joseph Buxbaum, PhD, Director ...

Tools used to decipher 'histone code' may be faulty

Tools used to decipher histone code may be faulty
2010-12-17
CHAPEL HILL, N.C. – The function of histones -- the proteins that enable yards of DNA to be crammed into a single cell -- depends on a number of chemical tags adorning their exterior. This sophisticated chemical syntax for packaging DNA into tight little coils or unraveling it again -- called the "histone code" -- is the latest frontier for researchers bent on understanding how genetics encodes life. But recent research from the University of North Carolina at Chapel Hill has found a number of issues with histone antibodies, the main tools used to decipher this code, ...

LAST 30 PRESS RELEASES:

Oceanic life found to be thriving thanks to Saharan dust blown from thousands of kilometers away

Analysis sheds light on COVID-19-associated disease in Japan

Cooler heads prevail: New research reveals best way to prevent dogs from overheating

UC Riverside medical school develops new curriculum to address substance use crisis

Food fussiness a largely genetic trait from toddlerhood to adolescence

Celebrating a century of scholarship: Isis examines the HSS at 100

Key biomarkers identified for predicting disability progression in multiple sclerosis

Study: AI could lead to inconsistent outcomes in home surveillance

Study: Networks of Beliefs theory integrates internal & external dynamics

Vegans’ intake of protein and essential amino acids is adequate but ultra-processed products are also needed

Major $21 million Australian philanthropic investment to bring future science into disease diagnosis

Innovating alloy production: A single step from ores to sustainable metals

New combination treatment brings hope to patients with advanced bladder cancer

Grants for $3.5M from TARCC fund new Alzheimer’s disease research at UTHealth Houston

UTIA researchers win grant for automation technology for nursery industry

Can captive tigers be part of the effort to save wild populations?

The Ocean Corporation collaborates with UTHealth Houston on Space Medicine Fellowship program

Mysteries of the bizarre ‘pseudogap’ in quantum physics finally untangled

Study: Proteins in tooth enamel offer window into human wellness

New cancer cachexia treatment boosts weight gain and patient activity

Rensselaer researcher receives $3 million grant to explore gut health

Elam named as a Fellow of the Electrochemical Society

Study reveals gaps in access to long-term contraceptive supplies

Shining a light on the roots of plant “intelligence”

Scientists identify a unique combination of bacterial strains that could treat antibiotic-resistant gut infections

Pushing kidney-stone fragments reduces stones’ recurrence

Sweet success: genomic insights into the wax apple's flavor and fertility

New study charts how Earth’s global temperature has drastically changed over the past 485 million years, driven by carbon dioxide

Scientists say we have enough evidence to agree global action on microplastics

485 million-year temperature record of Earth reveals Phanerozoic climate variability

[Press-News.org] Science's breakthrough of the year: The first quantum machine
A mechanical device that operates in the quantum realm tops the journal's list of advances in 2010