PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A breakthrough astrophysics code rapidly models stellar collisions

2021-04-23
(Press-News.org) A breakthrough astrophysics code, named Octo-Tiger, simulates the evolution of self-gravitating and rotating systems of arbitrary geometry using adaptive mesh refinement and a new method to parallelize the code to achieve superior speeds.

This new code to model stellar collisions is more expeditious than the established code used for numerical simulations. The research came from a unique collaboration between experimental computer scientists and astrophysicists in the Louisiana State University Department of Physics & Astronomy, the LSU Center for Computation & Technology, Indiana University Kokomo and Macquarie University, Australia, culminating in over of a year of benchmark testing and scientific simulations, supported by multiple NSF grants, including one specifically designed to break the barrier between computer science and astrophysics.

"Thanks to a significant effort across this collaboration, we now have a reliable computational framework to simulate stellar mergers," said Patrick Motl, professor of physics at Indiana University Kokomo. "By substantially reducing the computational time to complete a simulation, we can begin to ask new questions that could not be addressed when a single-merger simulation was precious and very time consuming. We can explore more parameter space, examine a simulation at very high spatial resolution or for longer times after a merger, and we can extend the simulations to include more complete physical models by incorporating radiative transfer, for example."

Recently published in Monthly Notices of the Royal Astronomical Society, "Octo-Tiger: A New, 3D Hydrodynamic Code for Stellar Mergers That Uses HPX Parallelisation," investigates the code performance and precision through benchmark testing. The authors, Dominic C. Marcello, postdoctoral researcher; Sagiv Shiber, postdoctoral researcher; Juhan Frank, professor; Geoffrey C. Clayton, professor; Patrick Diehl, research scientist; and Hartmut Kaiser, research scientist, all at Louisiana State University--together with collaborators Orsola De Marco, professor at Macquarie University and Patrick M. Motl, professor at Indiana University Kokomo--compared their results to analytic solutions, when known and other grid-based codes, such as the popular FLASH. In addition, they computed the interaction between two white dwarfs from the early mass transfer through to the merger and compared the results with past simulations of similar systems.

"A test on Australia's fastest supercomputer, Gadi (#25 in the World's Top 500 list), showed that Octo-Tiger, running on a core count over 80,000, displays excellent performance for large models of merging stars," De Marco said. "With Octo-Tiger, we cannot only reduce the wait time dramatically, but our models can answer many more of the questions we care to ask."

Octo-Tiger is currently optimized to simulate the merger of well-resolved stars that can be approximated by barotropic structures, such as white dwarfs or main sequence stars. The gravity solver conserves angular momentum to machine precision, thanks to a correction algorithm. This code uses HPX parallelization, allowing the overlap of work and communication and leading to excellent scaling properties to solve large problems in shorter time frames.

"This paper demonstrates how an asynchronous task-based runtime system can be used as a practical alternative to Message Passing Interface to support an important astrophysical problem," Diehl said. The research outlines the current and planned areas of development aimed at tackling a number of physical phenomena connected to observations of transients.

"While our particular research interest is in stellar mergers and their aftermath, there are a variety of problems in computational astrophysics that Octo-Tiger can address with its basic infrastructure for self-gravitating fluids," Motl said.

The animation (https://www.youtube.com/watch?v=hg9MQNLLJw4) was prepared by Shiber, who says: "Octo-Tiger shows remarkable performance both in the accuracy of the solutions and in scaling to tens of thousands of cores. These results demonstrate Octo-Tiger as an ideal code for modeling mass transfer in binary systems and in simulating stellar mergers."

INFORMATION:



ELSE PRESS RELEASES FROM THIS DATE:

Body's natural pain killers can be enhanced

2021-04-23
Fentanyl, oxycodone, morphine--these substances are familiar to many as a source of both pain relief and the cause of a painful epidemic of addiction and death. Scientists have attempted for years to balance the potent pain-relieving properties of opioids with their numerous negative side effects--with mostly mixed results. Work by John Traynor, Ph.D., and Andrew Alt, Ph.D., and their team at the University of Michigan Edward F. Domino Research Center, funded by the National Institute on Drug Abuse, seeks to side-step these problems by harnessing the body's own ability to block pain. All opioid drugs--from poppy-derived opium to heroin--work on receptors that are naturally present in the brain and elsewhere in the body. One such receptor, the mu-opioid receptor, ...

Targeting drug-resistant breast cancer with estrogen

Targeting drug-resistant breast cancer with estrogen
2021-04-23
LEBANON, NH - Researchers at Dartmouth's and Dartmouth-Hitchcock's Norris Cotton Cancer Center (NCCC) hope to make estrogen therapy a more accessible treatment option for breast cancer patients who could benefit from it. Anti-estrogen treatments, which block growth signals from estrogen receptors (ER) in tumors, are effective treatments for ER+ breast cancer. But it is common for breast tumors to become resistant to anti-estrogen treatments over time. The research team, led by molecular biologist Todd Miller, PhD, and Nicole Traphagen, a PhD candidate in the Miller Laboratory, found that in mice, cycling between estrogen treatment and anti-estrogen treatment at a specific point in time can dramatically increase ...

How oxygen radicals protect against cancer

2021-04-23
FRANKFURT. Originally, oxygen radicals - reactive oxygen species, or ROS for short - were considered to be exclusively harmful in the body. They are produced, for example, by smoking or UV radiation. Because of their high reactivity, they can damage many important molecules in cells, including the hereditary molecule DNA. As a result, there is a risk of inflammatory reactions and the degeneration of affected cells into cancer cells. Because of their damaging effect, however, ROS are also deliberately produced by the body, for example by immune or lung epithelial cells, which destroy invading bacteria and viruses with ROS. This requires relatively high ROS concentrations. In low concentrations, on the ...

From toxic ions to single-atom copper

From toxic ions to single-atom copper
2021-04-23
Copper remains one of the single most ubiquitous metals in everyday life. As a conductor of heat and electricity, it is utilized in wires, roofing and plumbing, as well as a catalyst for petrochemical plants, solar and electrical conductors and for a wide range of energy related applications. Subsequently, any method to harvest more of the valuable commodity proves a useful endeavor. Debora Rodrigues, Ezekiel Cullen Professor of Engineering at the University of Houston Cullen College of Engineering, in collaboration with Francisco C. Robles Hernandez, ...

Simple robots, smart algorithms

Simple robots, smart algorithms
2021-04-23
Anyone with children knows that while controlling one child can be hard, controlling many at once can be nearly impossible. Getting swarms of robots to work collectively can be equally challenging, unless researchers carefully choreograph their interactions -- like planes in formation -- using increasingly sophisticated components and algorithms. But what can be reliably accomplished when the robots on hand are simple, inconsistent, and lack sophisticated programming for coordinated behavior? A team of researchers led by Dana Randall, ADVANCE Professor of Computing and Daniel Goldman, Dunn Family Professor of Physics, both at Georgia Institute of Technology, sought to show that ...

Is raising the sales age of tobacco reducing youth smoking?

2021-04-23
Smoking is the leading cause of preventable death in America and causes about 30% of all cancer deaths. That's why researchers with the UC Davis Comprehensive Cancer Center wanted to study the impact of a California law passed in 2016 that raised the tobacco sales age from 18 to 21. Their new study published in Preventive Medicine examines smoking behavior after the state implemented one of the first tobacco 21 (T21) policies. The study, conducted by UC Davis researchers Melanie Dove, Susan Stewart and Elisa Tong, looked at smoking patterns before and after the law passed and compared California and other states without a T21 policy. The data was from the 2012-2019 Behavioral Risk Factor Surveillance System. "Most adult tobacco users start smoking ...

Researchers show enhanced electrode-water interactions in metal-free aqueous batteries

2021-04-23
Batteries are a part of everyday modern life, powering everything from laptops, phones and robot vacuums to hearing aids, pacemakers and even electric cars. But these batteries potentially pose safety and environmental risks. In a study recently published in Cell Reports Physical Science, researchers at Texas A&M University investigated the components of a different kind of battery -- a metal-free, water-based battery -- which would reduce the flammable nature of standard batteries and decrease the number of metal elements used in their production. Most batteries are ...

Successful cancer therapy using artificial metalloenzymes to deliver drugs

Successful cancer therapy using artificial metalloenzymes to deliver drugs
2021-04-23
Researchers led by Katsunori Tanaka and Kenward Vong at the RIKEN Cluster for Pioneering Research (CPR) in Japan have demonstrated that tumor growth can be reduced by therapy that tags cancer cells with different therapeutic molecules. In one case, the group was able to prevent tumors from forming in mice by targeting cancer cells with a compound that makes it difficult for the cells to clump together and form tumors. For tumors that already existed, they targeted cancer cells with toxic compounds that destroyed them. This study was published on April 23 in Science Advances. One of the major problems with current cancer treatments is that their effects are not limited to cancerous cells in ...

From corals to crops: How life protects the plans for its cellular power stations

From corals to crops: How life protects the plans for its cellular power stations
2021-04-23
An international team of researchers led by the University of Bergen has uncovered how organisms from crops to corals may avoid deadly DNA damage during evolution. Our cells, and those of animals, plants and fungi, contain compartments that produce chemical fuel. These compartments contain their own DNA, which stores instructions for important cellular machinery. But this so-called oDNA (organelle DNA) can become mutated, corrupting the instructions and preventing cells making enough energy. In humans and some other animals, a process called the "bottleneck" allows some offspring to inherit less mutated oDNA. This process needs mothers' egg cells to develop early, like in humans, where a human girl is born with all ...

Flexible diet may help leaf-eating lemurs resist deforestation

Flexible diet may help leaf-eating lemurs resist deforestation
2021-04-23
DURHAM, N.C. - Fruits and veggies are good for you and if you are a lemur, they may even help mitigate the effects of habitat loss. A new study sequencing the genome of four species of sifakas, a genus of lemurs found only in Madagascar's forests, reveals that these animals' taste for leaves runs all the way to their genes, which are also more diverse than expected for an endangered species. Sifakas are folivores, meaning that the bulk of their diet is composed of leaves. Leaves can be difficult to digest and full of toxic compounds meant to prevent them from being eaten. Unlike our carefully selected spinach, tree leaves also don't taste great, and are not very nutritious. Because of that, leaf-eaters ...

LAST 30 PRESS RELEASES:

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

Menarini Group and Insilico Medicine enter a second exclusive global license agreement for an AI discovered preclinical asset targeting high unmet needs in oncology

Climate fee on food could effectively cut greenhouse gas emissions in agriculture while ensuring a social balance

Harnessing microwave flow reaction to convert biomass into useful sugars

Unveiling the secrets of bone strength: the role of biglycan and decorin

Revealing the “true colors” of a single-atom layer of metal alloys

New data on atmosphere from Earth to the edge of space

Self-destructing vaccine offers enhanced protection against tuberculosis in monkeys

Feeding your good gut bacteria through fiber in diet may boost body against infections

Sustainable building components create a good indoor climate

High levels of disordered eating among young people linked to brain differences

Hydrogen peroxide and the mystery of fruit ripening: ‘Signal messengers’ in plants

T cells’ capability to fully prevent acute viral infections opens new avenues for vaccine development

Study suggests that magma composition drives volcanic tremor

Sea surface temperatures and deeper water temperatures reached a new record high in 2024

Connecting through culture: Understanding its relevance in intercultural lingua franca communication

Men more than three times as likely to die from a brain injury, new US study shows

Tongue cancer organoids reveal secrets of chemotherapy resistance

Applications, limitations, and prospects of different muscle atrophy models in sarcopenia and cachexia research

FIFAWC: A dataset with detailed annotation and rich semantics for group activity recognition

Transfer learning-enhanced physics-informed neural network (TLE-PINN): A breakthrough in melt pool prediction for laser melting

Holistic integrative medicine declaration

Hidden transport pathways in graphene confirmed, paving the way for next-generation device innovation

New Neurology® Open Access journal announced

[Press-News.org] A breakthrough astrophysics code rapidly models stellar collisions