PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Discovery of an elusive cell type in fish sensory organs

Capturing highly motile and invasive neuromast-associated ionocytes

Discovery of an elusive cell type in fish sensory organs
2021-04-26
(Press-News.org) KANSAS CITY, MO--One of the evolutionary disadvantages for mammals, relative to other vertebrates like fish and chickens, is the inability to regenerate sensory hair cells. The inner hair cells in our ears are responsible for transforming sound vibrations and gravitational forces into electrical signals, which we need to detect sound and maintain balance and spatial orientation. Certain insults, such as exposure to noise, antibiotics, or age, cause inner ear hair cells to die off, which leads to hearing loss and vestibular defects, a condition reported by 15% of the US adult population. In addition, the ion composition of the fluid surrounding the hair cells needs to be tightly controlled, otherwise hair cell function is compromised as observed in Ménière's disease.

While prosthetics like cochlear implants can restore some level of hearing, it may be possible to develop medical therapies to restore hearing through the regeneration of hair cells. Investigator Tatjana Piotrowski, PhD, at the Stowers Institute for Medical Research is part of the Hearing Restoration Project of the Hearing Health Foundation, which is a consortium of laboratories that do foundational and translational science using fish, chicken, mouse, and cell culture systems.

"To gain a detailed understanding of the molecular mechanisms and genes that enable fish to regenerate hair cells, we need to understand which cells give rise to regenerating hair cells and related to that question, how many cell types exist in the sensory organs," says Piotrowski.

The Piotrowski Lab studies regeneration of sensory hair cells in the zebrafish lateral line. Located superficially on the fish's skin, these cells are easy to visualize and to access for experimentation. The sensory organs of the lateral line, known as neuromasts, contain support cells which can readily differentiate into new hair cells. Others had shown, using techniques to label cells of the same embryonic origin in a particular color, that cells within the neuromasts derive from ectodermal thickenings called placodes.

It turns out that while most cells of the zebrafish neuromast do originate from placodes, this isn't true for all of them.

In a paper published online April 19, 2021, in Developmental Cell, researchers from the Piotrowski Lab describe their discovery of the occasional occurrence of a pair of cells within post-embryonic and adult neuromasts that are not labeled by lateral line markers. When using a technique called Zebrabow to track embryonic cells through development, these cells are labeled a different color than the rest of the neuromast.

"I initially thought it was an artifact of the research method," says Julia Peloggia, a predoctoral researcher at The Graduate School of the Stowers Institute for Medical Research, co-first author of this work along with another predoctoral researcher, Daniela Münch. "Especially when we are looking just at the nuclei of cells, it's pretty common in transgenic animal lines that the labels don't mark all of the cells," adds Münch.

Peloggia and Münch agreed that it was difficult to discern a pattern at first. "Although these cells have a stereotypical location in the neuromast, they're not always there. Some neuromasts have them, some don't, and that threw us off," says Peloggia.

By applying an experimental method called single-cell RNA sequencing to cells isolated by fluorescence-activated cell sorting, the researchers identified these cells as ionocytes--a specialized type of cell that can regulate the ionic composition of nearby fluid¬. Using lineage tracing, they determined that the ionocytes derived from skin cells surrounding the neuromast. They named these cells neuromast-associated ionocytes.

Next, they sought to capture the phenomenon using time-lapse and high-resolution live imaging of young larvae.

"In the beginning, we didn't have a way to trigger invasion by these cells. We were imaging whenever the microscope was available, taking as many time-lapses as possible--over days or weekends--and hoping that we would see the cells invading the neuromasts just by chance," says Münch.

Ultimately, the researchers observed that the ionocyte progenitor cells migrated into neuromasts as pairs of cells, rearranging between other support cells and hair cells while remaining associated as a pair. They found that this phenomenon occurred all throughout early larval, later larval, and well into the adult stages in zebrafish. The frequency of neuromast-associated ionocytes correlated with developmental stages, including transfers when larvae were moved from ion-rich embryo medium to ion-poor water.

From each pair, they determined that only one cell was labeled by a Notch pathway reporter tagged with fluorescent red or green protein. To visualize the morphology of both cells, they used serial block face scanning electron microscopy to generate high-resolution three-dimensional images. They found that both cells had extensions reaching the apical or top surface of the neuromast, and both often contained thin projections. The Notch-negative cell displayed unique "toothbrush-like" microvilli projecting into the neuromast lumen or interior, reminiscent of that seen in gill and skin ionocytes.

"Once we were able to see the morphology of these cells--how they were really protrusive and interacting with other cells--we realized they might have a complex function in the neuromast," says Münch.

"Our studies are the first to show that ionocytes invade sensory organs even in adult animals and that they only do so in response to changes in the environment that the animal lives in," says Peloggia. "These cells therefore likely play an important role allowing the animal to adapt to changing environmental conditions."

Ionocytes are known to exist in other organ systems. "The inner ear of mammals also contains cells that regulate the ion composition of the fluid that surrounds the hair cells, and dysregulation of this equilibrium leads to hearing and vestibular defects," says Piotrowski. While ionocyte-like cells exist in other systems, it's not known whether they exhibit such adaptive and invasive behavior.

"We don't know if ear ionocytes share the same transcriptome, or collection of gene messages, but they have similar morphology to an extent and may possibly have a similar function, so we think they might be analogous cells," says Münch. Our discovery of neuromast ionocytes will let us test this hypothesis, as well as test how ionocytes modulate hair cell function at the molecular level," says Peloggia.

Next, the researchers will focus on two related questions--what causes these ionocytes to migrate and invade the neuromast, and what is their specific function?

"Even though we made this astounding observation that ionocytes are highly motile, we still don't know how the invasion is triggered," says Peloggia. "Identifying the signals that attract ionocytes and allow them to squeeze into the sensory organs might also teach us how cancer cells invade organs during disease." While Peloggia plans to investigate what triggers the cells to differentiate, migrate, and invade, Münch will focus on characterizing the function of the neuromast-associated ionocytes. "The adaptive part is really interesting," explains Münch. "That there is a process involving ionocytes extending into adult stages that could modulate and change the function of an organ--that's exciting."

Other coauthors of the study include Paloma Meneses-Giles, Andrés Romero-Carvajal, PhD, Mark E. Lush, PhD, and Melainia McClain from Stowers; Nathan D. Lawson from the University of Massachusetts Medical School; and Y. Albert Pan, PhD, from Virginia Tech Carilion.

The work was funded by the Stowers Institute for Medical Research and the National Institute of Child Health and Human Development of the National Institutes of Health (award 1R01DC015488-01A1). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Lay Summary of Findings

Humans cannot regenerate inner ear hair cells, which are responsible for detecting sound, but non-mammalian vertebrates can readily regenerate sensory hair cells that are similar in function. During the quest to understand zebrafish hair cell regeneration, researchers from the lab of Investigator Tatjana Piotrowski, PhD, at the Stowers Institute for Medical Research discovered the existence of a cell type not previously described in the process.

The research team found newly differentiated, migratory, and invasive ionocytes located in the sensory organs that house the cells giving rise to new hair cells in larval and adult fish. The researchers published their findings online April 19, 2021, in Developmental Cell. Normal invasive (that is, non-metastatic) behavior of cells after embryonic development is not often observed. Future research by the team will focus on identifying triggers for such behavior and the function of such cells, including how this process may relate to hair cell regeneration.

INFORMATION:

About the Stowers Institute for Medical Research

Founded in 1994 through the generosity of Jim Stowers, founder of American Century Investments, and his wife, Virginia, the Stowers Institute for Medical Research is a non-profit, biomedical research organization with a focus on foundational research. Its mission is to expand our understanding of the secrets of life and improve life's quality through innovative approaches to the causes, treatment, and prevention of diseases.

The Institute consists of twenty independent research programs. Of the approximately 500 members, over 370 are scientific staff that includes principal investigators, technology center directors, postdoctoral scientists, graduate students, and technical support staff. Learn more about the Institute at http://www.stowers.org and about its graduate program at http://www.stowers.org/gradschool.


[Attachments] See images for this press release:
Discovery of an elusive cell type in fish sensory organs

ELSE PRESS RELEASES FROM THIS DATE:

Long-term care infrastructure must be re-imagined in a post-pandemic world

2021-04-26
Protecting long-term care residents from outbreaks requires different infrastructure, proper staffing conditions and a culture of quality assurance, researchers have found. The experts further determined that designing smaller, more homelike spaces would minimize the spread of viruses while promoting better health and quality of life for residents. "Community outbreaks and lack of personal protective equipment were the primary drivers of outbreak occurrence in long-term care homes, and the built environment was the major determinant of outbreak severity," said George Heckman, a professor in Waterloo's School of Public Health and Health Systems and Schlegel Research Chair in Geriatric Medicine with the Research Institute for Aging. "We need to distinguish ...

Mapping the path to rewilding: the importance of landscape

Mapping the path to rewilding: the importance of landscape
2021-04-26
MUNICH -- Rewilding--a hands-off approach to restoring and protecting biodiversity--is increasingly employed across the globe to combat the environmental footprint of rapid urbanization and intensive farming. The recent reintroduction of grey wolves in Yellowstone, America's first national park, is regarded as one of the most successful rewilding efforts, having reinvigorated an ecosystem that had been destabilized by the removal of large predators. However, successful attempts to rewild the landscape hinge on more than just the reintroduction of a plant or animal species, they also require that geography and geology be taken into account, according to new research from the University of Amsterdam and the Dutch State Forestry Service. It is the landscape that ultimately ...

New research uncovers continental crust emerged 500 million years earlier than thought

New research uncovers continental crust emerged 500 million years earlier than thought
2021-04-26
MUNICH -- The first emergence and persistence of continental crust on Earth during the Archaean (4 billion to 2.5 billion years ago) has important implications for plate tectonics, ocean chemistry, and biological evolution, and it happened about half a billion years earlier than previously thought, according to new research being presented at the EGU General Assembly 2021. Once land becomes established through dynamic processes like plate tectonics, it begins to weather and add crucial minerals and nutrients to the ocean. A record of these nutrients is preserved in the ancient rock record. Previous research used strontium isotopes in marine carbonates, but these rocks are usually scarce ...

Scientists have cultured the first stable coral cell lines

Scientists have cultured the first stable coral cell lines
2021-04-26
Researchers have successfully grown cells from the stony coral, Acropora tenuis, in petri dishes The cell lines were created by separating out cells from coral larvae, which then developed into eight distinct cell types Seven out of eight cell types were stable and could grow indefinitely, remaining viable even after freezing Some of the cell types represented endoderm-like cells, and could therefore shed light on how coral interacts with photosynthesizing algae and how bleaching occurs The cell lines could be used in many avenues ...

3D holographic head-up display could improve road safety

2021-04-26
Researchers have developed the first LiDAR-based augmented reality head-up display for use in vehicles. Tests on a prototype version of the technology suggest that it could improve road safety by 'seeing through' objects to alert of potential hazards without distracting the driver. The technology, developed by researchers from the University of Cambridge, the University of Oxford and University College London (UCL), is based on LiDAR (light detection and ranging), and uses LiDAR data to create ultra high-definition holographic representations of road objects which are beamed directly to the driver's eyes, instead of 2D windscreen projections used in most head-up displays. While the technology has not yet been ...

Study highlights risks of anxiety and depression after cardiac device implantation

2021-04-24
Patients receiving an implantable cardioverter defibrillator (ICD) should be regularly screened for anxiety and depression, according to research presented at EHRA 2021, an online scientific congress of the European Society of Cardiology (ESC).1 Study author Professor Susanne Pedersen of Odense University Hospital, Denmark said: "Most patients adapt well to living with an ICD. For others it completely changes their life, with worries about shocks from the device, body image, and livelihood as some need to change their job." Previous studies have shown ...

Global experts define how to assess quality of care for patients with atrial fibrillation

2021-04-24
Management and outcomes of adults with atrial fibrillation are presented today at EHRA 2021, an online scientific congress of the European Society of Cardiology (ESC).1 The document is published in EP Europace,2 a journal of the ESC. Atrial fibrillation is the most common heart rhythm disorder, affecting more than 40 million people globally.3 Those with the disorder have increased risks of complications including stroke, heart failure and dementia, and are twice as likely to be admitted to hospital as their peers without the condition. The economic burden of atrial fibrillation is rising, mainly due to complications and hospitalisations.4 Effective therapies ...

Simple foot test detects heart rhythm disorder in patients with diabetes

2021-04-24
Sophia Antipolis - 24 April 2021: Atrial fibrillation can be detected during annual foot assessments in patients with diabetes, according to research presented today at EHRA 2021, an online scientific congress of the European Society of Cardiology (ESC).1 "In our study, one in six patients with diabetes had previously undiagnosed atrial fibrillation," said study author Dr. Ilias Kanellos of the European University of Cyprus, Nicosia. "This presents an opportunity to provide treatment to prevent subsequent strokes." Diabetes is an independent risk factor for atrial fibrillation.2 Prevalence of the heart rhythm disorder is at least two-fold higher in patients with diabetes compared to those ...

Age-related muscle loss and walking abilities predict outcomes after lung cancer surgery

2021-04-24
Lung cancer is a major global cause of mortality, reportedly accounting for 1.7 million deaths each year. The most common form of lung cancer is non-small-cell lung cancer (NSCLC), and early-stage NSCLCs can often be surgically resected. Unfortunately, some patients still experience poor outcomes after surgical resection, prompting further research on the relationship between a patient's preoperative status and the likelihood of good postoperative outcomes. Given this need for information, Dr. Shinya Tanaka from the Department of Rehabilitation and Prof. Naoki Ozeki from the ...

A lesson from Arctic sea-ice prediction in 2020: accurate subseasonal-to-seasonal prediction remains a grand challenge

A lesson from Arctic sea-ice prediction in 2020: accurate subseasonal-to-seasonal prediction remains a grand challenge
2021-04-24
As an indicator and "amplifier" of global climate change, the Arctic's health and stability is the cornerstone of the stability of our climate system. It has far-reaching impacts on ecosystems, coastal resilience, and human settlements in the middle and high latitudes. The Arctic has experienced amplified warming and extensive sea-ice retreat in recent decades. On 15 September 2020, the Arctic sea-ice extent (SIE) reached its annual minimum, which, based on data from the National Snow and Ice Data Center, was about 3.74 million km2 (1.44 million square miles). This value was about 40% less than the climate average (~6.27 million km2) during 1980-2010. It was ...

LAST 30 PRESS RELEASES:

Antidepressant shows promise for treating brain tumors

European Green Deal: a double-edged sword for global emissions

Walking in lockstep

New blood test could be an early warning for child diabetes

Oceanic life found to be thriving thanks to Saharan dust blown from thousands of kilometers away

Analysis sheds light on COVID-19-associated disease in Japan

Cooler heads prevail: New research reveals best way to prevent dogs from overheating

UC Riverside medical school develops new curriculum to address substance use crisis

Food fussiness a largely genetic trait from toddlerhood to adolescence

Celebrating a century of scholarship: Isis examines the HSS at 100

Key biomarkers identified for predicting disability progression in multiple sclerosis

Study: AI could lead to inconsistent outcomes in home surveillance

Study: Networks of Beliefs theory integrates internal & external dynamics

Vegans’ intake of protein and essential amino acids is adequate but ultra-processed products are also needed

Major $21 million Australian philanthropic investment to bring future science into disease diagnosis

Innovating alloy production: A single step from ores to sustainable metals

New combination treatment brings hope to patients with advanced bladder cancer

Grants for $3.5M from TARCC fund new Alzheimer’s disease research at UTHealth Houston

UTIA researchers win grant for automation technology for nursery industry

Can captive tigers be part of the effort to save wild populations?

The Ocean Corporation collaborates with UTHealth Houston on Space Medicine Fellowship program

Mysteries of the bizarre ‘pseudogap’ in quantum physics finally untangled

Study: Proteins in tooth enamel offer window into human wellness

New cancer cachexia treatment boosts weight gain and patient activity

Rensselaer researcher receives $3 million grant to explore gut health

Elam named as a Fellow of the Electrochemical Society

Study reveals gaps in access to long-term contraceptive supplies

Shining a light on the roots of plant “intelligence”

Scientists identify a unique combination of bacterial strains that could treat antibiotic-resistant gut infections

Pushing kidney-stone fragments reduces stones’ recurrence

[Press-News.org] Discovery of an elusive cell type in fish sensory organs
Capturing highly motile and invasive neuromast-associated ionocytes