(Press-News.org) Neurons result from a highly complex and unique series of cell divisions. For example, in fruit flies, the process starts with stem cells that divide into mother cells (progenitor cells), that then divide into precursor cells that eventually become neurons.
A team of the University of Michigan (U-M), spearheaded by Nigel Michki, a graduate student, and Assistant Professor Dawen Cai in the departments of Biophysics (LS&A) and Cell and Developmental Biology at the Medical School, identified many genes that are important in fruit flies' neuron development, and that had never been described before in that context.
Since many genes are conserved across species such as between fruit flies (Drosophila), mice, and humans, what is learnt in flies can also serve as a model to better understand other species, including humans. "Now that we know which genes are involved in this form of neurogenesis in flies, we can look for them in other species and test for them. We work on a multitude of organisms at U-M and we've the potential to interrogate across organisms," explains Michki. "In my opinion, the work we did is one of the many pieces that will inform other work that will inform disease," adds Michki. "This is why we do foundational research like this one."
Flies are also commonly used in many different types of research that might benefit from having a more comprehensive list of the fly genes with their associated roles in neuron cell development.
The discovery
Neurons are made from stem cells that massively multiply before becoming neurons. In the human brain, the process is extremely complex, involving billions of cells. In the fly brain, the process is much simpler, with around 200 stem cells for the entire brain. The smaller scale allows for a fine analysis of the neuronal cell division process from start to finish.
In flies, when the stem cell divides, it yields another stem cell and a progenitor cell. When this last one divides, it makes a so-called precursor cell that divides only once and gives rise to two neurons. Genes control this production process by telling the cells either to divide --and which particular type of cell to produce-- or to stop dividing.
To this day, only a few of the genes that control this neuron development process have been identified and in this publication in Cell Reports, the scientists have characterized many more genes involved. Along the timeline of the neuron development process, the U-M team could precisely record which genes were involved and for how long.
In particular, at the progenitors' stage, the scientists identified three genes that are important at this stage for defining what 'kind' of neuron each progenitor will make; these particular genes had never been described before in this context. They also validated previously known marker genes that are known to regulate the cell reproduction process.
When they applied their analysis technique to the other phases of the neuron development process, they also recorded the expression of additional genes. However, it is still unknown why these genes go up in expression at different steps of the neuron development process and what role they actually play in these different steps. "Now that many candidate genes are identified, we are investigating the roles they play in the neuron maturation and fate determination process," says Cai. "We are also excited to explore other developmental timepoints to illustrate the dynamic changes of the molecular landscape in the fly brain."
"This work provides rich information on how to program stem cell progeny into distinct neuron types as well as how to trans-differentiate non-neuronal cell types into neurons. These findings will have significant impact on the understanding of the normal brain development as well as on neuron regeneration medicine," adds Cheng-Yu Lee, a Professor from the U-M Life Sciences Institute who collaborated with the Cai Lab.
The techniques
This study is mostly based on high-throughput single-cell RNA-sequencing techniques. The scientists took single cells from fruit flies' brains and sequenced the RNA, generating hundreds of gigabytes of data in only one day. From the RNA sequences, they could determine the developmental stage of each neuron. "We now have a very good understanding of how this process goes at the RNA level," says Michki.
The team also used traditional microscope observations to localize where these different RNAs are being expressed in the brain. "Combining in silico analysis and in situ exploration not only validates the quality of our sequencing results, but also restores the spatial and temporal relationship of the candidate genes, which is lost in the single cell dissociation process," says Cai.
At the beginning of their study, the scientists analyzed the large data set with open-source software. Later, they developed a portal (MiCV) that eases the use of existing computer services and allows to test for repeatability. This portal can be utilized for cell and gene data analysis from a variety of organs and does not require computer programming experience. "Tools like MiCV can be very powerful for researchers who are doing this type of research for the first time and who want to quickly generate new hypotheses from their data," says Michki. "It saves a lot of time for data analysis, as well as expenses on consultant fees. The ultimate goal is to allow scientists to focus more on their research rather than on sometimes daunting data analysis tools." The MiCV tool is currently being commercialized.
INFORMATION:
The collaborators of this study are from the Dawen Cai lab at the University of Michigan Medical School as well as Dr. Cheng-Yu Lee, from the U-M Life Sciences Institute. The Cai lab is a member of the U-M Center for RNA Biomedicine. The team used two U-M core facilities, the Flow Cytometry Core and the Advanced Genomics Core. This work is supported by funding from the University of Michigan, including the MCubed program, Department of Cell and Developmental Biology's IDEA Awards in Stem Cell Biology, and the MTRAC program.
Paper cited: Michki et al., The molecular landscape of neural differentiation in the developing Drosophila brain revealed by targeted scRNA-seq and multi-informatic analysis, Cell Reports (2021), DOI: https://doi.org/10.1016/j.celrep.2021.109039
DALLAS - April 27, 2021 - Researchers with the Peter O'Donnell Jr. Brain Institute at UT Southwestern have identified a new protein implicated in cell death that provides a potential therapeutic target that could prevent or delay the progress of neurodegenerative diseases following a stroke.
Scientists from the departments of pathology, neurology, biochemistry, and pharmacology at UTSW have identified and named AIF3, an alternate form of the apoptosis-inducing factor (AIF), a protein that is critical for maintaining normal mitochondrial function. Once released from mitochondria, AIF triggers processes that induce a type of programmed cell death.
In a END ...
Isaac Newton may have met his match.
For centuries, engineers have relied on physical laws -- developed by Newton and others -- to understand the stresses and strains on the materials they work with. But solving those equations can be a computational slog, especially for complex materials.
MIT researchers have developed a technique to quickly determine certain properties of a material, like stress and strain, based on an image of the material showing its internal structure. The approach could one day eliminate the need for arduous physics-based calculations, instead relying on computer vision and machine learning to generate estimates in real time.
The researchers say the advance could enable faster design prototyping and material ...
Des Plaines, IL - In a randomized, double-blind trial of patients with acute undifferentiated agitation in the emergency department, droperidol was more effective for sedation and was associated with fewer episodes of respiratory depression than lorazepam or either dose of ziprasidone. This is the conclusion of END ...
COLUMBIA, Mo. -- Having grown up poor in a rural village in Zimbabwe, Wilson Majee saw firsthand as a child the lack of educational opportunities that were easily accessible and how that impacted the youth in his village.
Now an associate professor in the University of Missouri School of Health Professions, Majee researches the challenges facing disadvantaged, rural youth. He found in a recent study that young people who are disengaged from their communities are much more likely to participate in risky behaviors such as substance abuse, particularly in rural areas that lack educational opportunities.
For the study, Majee spoke with youth in rural South Africa about the factors contributing to drug abuse for the NEET population, which stands ...
A promising new concept published by an interdisciplinary research team in "Proceedings of the National Academy of Sciences" (PNAS) paves the way for major advances in the field of magnetic resonance imaging (MRI). Their new technique could significantly simplify hyperpolarized MRI, which developed around 20 years ago for observing metabolic processes in the body. The proposal involves the hyperpolarization of the metabolic product fumarate using parahydrogen and the subsequent purification of the metabolite. "This technique would not only be simpler, but also much cheaper than the previous procedure," said leader of the project Dr. James Eills, a member of the research team of Professor Dmitry Budker at Johannes Gutenberg ...
African waters have been contributing to the global supply of fish for years, with three of the four most productive marine ecosystems in the world near the continent. African countries' Exclusive Economic Zones (EEZs) contributed over 6 million metric tons of fish to the world's food supply, supporting food security and livelihood in the continent, while generating $15 billion to the African gross domestic product in 2011. Every sovereign state has an EEZ, an area of ocean adjacent to their shores in which they have special rights regarding the exploration and use of marine resources.
Industrial fleets from countries around the world have been increasingly fishing in African waters, but with climate change ...
The risk of developing atherosclerosis - a narrowing of the arteries as cholesterol plaque builds up, leading to obstruction of blood flow - is higher for people with autoimmune rheumatic diseases than for the general population. As a result, they are more likely to have heart attacks and other cardiovascular disorders.
The good news, according to a new study published in Rheumatology, is that regular exercise is a powerful weapon against vascular dysfunction in these patients.
In the article, researchers working in Brazil and the United Kingdom report the results of a systematic review of the scientific literature on the subject. The review, which ...
SAN FRANCISCO, CA--April 27, 2021--In the 40-some years since the beginning of the HIV/AIDS epidemic, scientists have learned a lot about the virus, the disease, and ways to treat it. But one thing they still don't completely understand is which exact cells are most susceptible to HIV infection.
Without this knowledge, it is difficult to envision targeting these cells to protect the millions of people who encounter the virus for the first time every year, or the infected people in which infection will likely rebound if they go off therapy.
Scientists have known for a long time that the virus homes in on so-called memory ...
Researchers have spent more than three decades developing and studying miniature biosensors that can identify single molecules. In five to 10 years, when such devices may become a staple in doctors' offices, they could detect molecular markers for cancer and other diseases and assess the effectiveness of drug treatment to fight those illnesses.
To help make that happen and to boost the accuracy and speed of these measurements, scientists must find ways to better understand how molecules interact with these sensors. Researchers from the National Institute of Standards and Technology (NIST) and Virginia Commonwealth University (VCU) have now developed a new approach. ...
Skoltech researchers used Google Trends' Big Data ensuing from human interactions with the Internet to develop a new methodology - a tool and a data source - for analyzing and researching the growth of startups. A paper reporting these important findings was published in technology management journal, Technological Forecasting and Social Change.
Startups and high-growth technology-based ventures they transform into are regarded as the key drivers of economic development, innovation, and job creation on the national and global level. However, despite their crucial importance for the economy and high interest from researchers and policy-makers, startups display growth patterns that are difficult to analyze. These fragile, early-stage private ...