PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Immunomics: A conversation on the future of diagnostics with Ramy Arnaout

2021-05-04
(Press-News.org) The human immune system doesn't just protect our health, it reflects it. Each encounter with a potential disease-causing agent causes the body to produce specific immune agents -- proteins known as antibodies and T-cell receptors -- tailor-made to recognize and destroy the invader. Tasked with preventing re-infection, antibodies and T-cell receptors (TCR) from your previous encounters circulate throughout the body indefinitely, like a record of your personal medical history that you carry inside of you.

Clinical pathologist Ramy Arnaout, MD, DPhil, Associate Director of the Clinical Microbiology Laboratories at Beth Israel Deaconess Medical Center, wants to mine those personal medical records for information. In a recent perspective published in Frontiers in Immunology, Arnaout and colleagues in the Adaptive Immune Receptor Repertoire Community (AIRR-C) outline how the immunome -- all of the genes collectively expressed by an individual's immune cells -- holds the potential to provide researchers and physicians with unprecedented insight into an individual's health. Collecting that information from large numbers of patients could one day facilitate diagnostics via a near-universal blood test and pave the way to targeted therapies for a wide variety of conditions.

We asked Dr. Arnaout to tell us more about this new frontier of personalized medicine.

What exactly is the immunome and what can researchers and physicians learn from it?

The immunome is the complete set of immune cells -- antibodies and T cell receptors (TCR) -- that every person makes in response to infections, vaccinations, transplants and transfusions, autoimmune diseases, aging and cancers.

Right now, you have in your body something like a hundred billion to a trillion T and B cells, minding their own business, circulating through your blood, leaving to check out what's going on in all your organs, and then completing the loop and coming back around.

A number of us in the field have been thinking for some time that if we could just figure out which antibodies and T-cell receptors match to which disease or condition, then we would have a universal diagnostic. That is, we would be able to look at a person's antibodies and T-cell receptors, and just by seeing what's there, we'd be able to say, "Oh, these antibodies are against melanoma, that means you probably had it, but your immune system took care of it," or, "You probably had the flu."

One blood test, one jab -- everything else is computer science on the other end. But first we need to crack that code.

What could researchers and physicians do with this information?

If I looked at your immunome and your friend's immunome, you might assume that you'd have nothing in common. But, despite the underlying differences among us all, the antibodies and TCR we produce are similar enough even if they are not identical that scientists can look at them bioinformatically and recognize patterns.

We know now from data that despite extraordinary, unfathomable potential of diversity -- there are more different possible sequences than stars in the observable universe, certainly more than grams of mass in the sun -- you and I are not genetically that different. We live in the same world, we're sneezed on by the same people on the subway -- it is incredible that our actual diversity genetically is so unbelievably constrained that we have been able to and regularly do find patterns that we might have thought couldn't exist ten years ago.

So, by getting samples from people who have known conditions -- such as COVID-19, dengue, ebola and other infectious diseases -- and comparing them to control samples, scientists can computationally pull out patterns.

But the missing ingredient here is you. In this paper my colleagues and I just published in Frontiers in Immunology, we're trying to announce to the scientific community and beyond that we can find these patterns and put them to good use. But we need clinicians to be aware of this and connect with us.

For example, say an endocrinologist has a patient with a benign thyroid growth. In principle, we could take a sample of that patient's blood, find a sequence, and then use that sequence as an early diagnostic tool for future patients.

What technology is required to decode the immunome?

Step one was sequencing. Sequencing was the technology that made this kind of thinking possible. We now have the ability to sequence these antibody and TCR genes so that we can actually see what's in there.

Now that sequencing is more of a commodity, the frontier has moved to 'how can we find the patterns?' That's the mathematical and computational side of things, processing the sequencing data with artificial intelligence or machine learning algorithms.

But I don't want to overlook this third plank, even though it's not as splashy as sequencing and artificial intelligence: As I said before, the missing ingredient is you. We are past due for a nationwide, learning healthcare system.

Can we make sure that if a patient comes into a hospital in Massachusetts or Maine or Missouri, we can eventually get access to that blood sample that's about to be thrown out long after the patient has gone home, and sequence the millions of antibody and TCR genes it contains? And in addition to access to these discarded specimens across medical systems, we need them correlated to the information in electronic health records (EHR).

With the immunome, we have the chance again to use sequencing to learn about an individual's health, add that information to a database, correlate it to that person's health record, times millions of individuals -- we can untangle this code in relatively short order.

What is the good faith critique of this line of thought?

There is a point of view that if you want to diagnose an infection, for example, why look for the response? Just look for the infectious agent itself, right? Or if you want to see how person responds to cancer treatment, why look at the adaptive response of the immune as an indicator -- why not test cancer cells against drug? These are reasonable questions.

The answer is, the body takes a lot of these insults very seriously. Even if you have a rip-roaring, potentially life-threatening infection, the number of viable bacteria per milliliter of blood is vanishingly small -- around one viable bacterium per 5-10 milliliters of blood. Maybe there's a lot of bacteria somewhere in your body. But more typically, your body just takes infection with bacteria very seriously, so just a few bacteria are enough to set off a cascade of events that can kill you. Finding the actual bacteria, and distinguishing it from random bacterial DNA flotsam in the blood, is harder than it is to look at a person and say, "this person's white blood cell count is through the roof."

In other words, the immune response is not a proportional response, it's often a massively disproportionately response in many cases. It acts as a signal amplifier from a diagnostic perspective, and that's an advantage. If we can get enough samples to recognize a pattern, and if we can get enough samples, the track-record so far suggests we can determine what that signal is.

Why did you and your colleagues publish this Frontiers in Immunology paper now?

The Adaptive Immune Receptor Repertoire Community (AIRR-C) is a dedicated community that we wrote this paper with and on behalf of. We have the knowledge and expertise to lay the groundwork for the diagnostic potential of the immunome, but we can go so much faster with the help of others. That's why we are putting out a call to clinicians, researchers and others to join efforts with AIRR-C.

My hope is the next generation of doctors in medical school, when they hear about this they think, "I want to work on that."

This is the future of blood testing. It's a tremendously exciting time.

INFORMATION:



ELSE PRESS RELEASES FROM THIS DATE:

Emergency physicians first to safely treat vaccine-induced blood clot with heparin alternative

2021-05-04
WASHINGTON, DC -- A new case report, detailed in Annals of Emergency Medicine, is the first known case of a patient with VITT (vaccine-induced thrombotic thrombocytopenia) treated with a heparin alternative following the Centers for Disease Control and Prevention (CDC) guidance. An otherwise healthy female patient in her 40s came to the emergency department at UCHealth University of Colorado Hospital twelve days after receiving the Johnson & Johnson vaccine with a headache, dizziness, and vision changes. The patient was treated on April 13, 2021, the same day that the Centers for Disease Control and Prevention (CDC) announced a pause in the administration of the Johnson & Johnson vaccine. CDC guidance recommended ...

The sensitive brain at rest

2021-05-04
You know that raw overwhelm people have been reporting after months of a pandemic, compounded by economic issues and social unrest? Does fatigue and compulsive social media scrolling strike a familiar chord? Those brittle feelings offer us a glimpse into what regular life can be like for individuals with sensory processing sensitivity (SPS), a biological trait possessed by roughly a third of the population. In a world of constant information overload and stress, it's a characteristic that can result in a variety of behaviors, from emotional outbursts to withdrawal, overwhelm and procrastination. "Behaviorally, we observe it as being more careful and cautious when approaching new things," said Bianca Acevedo, a researcher ...

New GSA Bulletin articles published ahead of print in April

2021-05-04
Boulder, Colo., USA: The Geological Society of America regularly publishes articles online ahead of print. For April, GSA Bulletin topics include multiple articles about the dynamics of China and Tibet; the Bell River hypothesis that proposes that an ancestral, transcontinental river occupied much of northern North America during the Cenozoic Era; new findings in the climatic history during one of the Earth's coldest periods: The Late Paleozoic Ice Age; and the age an nature of the Chicxulub impact crater. You can find these articles at END ...

A calculator that predicts risk of lung cancer underperforms in diverse populations

2021-05-04
PHILADELPHIA - Lung cancer is the third most common cancer in the U.S. and the leading cause of cancer death, with about 80% of the total 154,000 deaths recorded each year caused by cigarette smoking. Black men are more likely to develop and die from lung cancer than persons of any other racial or ethnic group, pointing to severe racial disparities. For example, research has shown that Black patients are less likely to receive early diagnosis and life-saving treatments like surgery. Now researchers at Jefferson have found that a commonly used risk prediction model does not accurately identify high-risk Black patients who could gain life-saving benefit from early screening, and paves the way for improving screenings and guidelines. The research was published in JAMA Network ...

Investigating the role of Brd4 in diet-induced obesity

Investigating the role of Brd4 in diet-induced obesity
2021-05-04
A new study, published in JCI Insight, looks at how Brd4, a regulator of the innate immune response, influences diet-induced obesity. The researchers believe that Brd4 could be used as a target for obesity and insulin resistance. Approximately one-third of the adults and one in five children in the U.S. have obesity problems. Unfortunately, the condition is also associated with the development of other diseases including diabetes, cardiovascular disorders, and cancer. "One of the biggest challenges we face is trying to understand how people develop obesity. If we can understand that, we can develop solutions for treating or preventing these diseases," said Lin-Feng Chen (MME), a professor of biochemistry. The researchers investigated the role of the ...

Soybean cyst nematode is the most damaging soybean pathogen--and it's rapidly spreading

Soybean cyst nematode is the most damaging soybean pathogen--and its rapidly spreading
2021-05-04
The soybean cyst nematode (SCN) is the most damaging pathogen of soybean in the United States and Canada and it is spreading rapidly, according to information compiled by Gregory Tylka and Christopher Marett, nematologists at Iowa State University. SCN was first found in the United States in 1954 and most recent estimates show that SCN results in $1.5 billion in annual yield losses. "The continuing spread of SCN is alarming, but not surprising," said Tylka. "Anything that moves soil can move the nematode, including wind, water, and farm machinery." ...

More youth report concussions since 2016, U-M study shows

2021-05-04
Educating athletes, parents and coaches about concussion treatment and prevention has been a priority during the last decade, but are the intended audiences hearing the message? New research from the University of Michigan found that 1 in 4 adolescents self-reported at least one concussion in 2020, up from about 20% in 2016. During that same time period, youth who reported one concussion rose from roughly 14% to 18%, and those who reported at least two concussions increased from about 6% to 7%. "Self-reported concussions could be increasing given that both children and parents have greater ...

New graphite-based sensor technology for wearable medical devices

2021-05-04
Researchers at AMBER, the SFI Centre for Advanced Materials and BioEngineering Research, and from Trinity's School of Physics, have developed next-generation, graphene-based sensing technology using their innovative G-Putty material. The team's printed sensors are 50 times more sensitive than the industry standard and outperform other comparable nano-enabled sensors in an important metric seen as a game-changer in the industry: flexibility. Maximising sensitivity and flexibility without reducing performance makes the teams' technology an ideal candidate for the emerging areas ...

Addressing the persistent controversies and questions in preterm infant nutrition

Addressing the persistent controversies and questions in preterm infant nutrition
2021-05-04
A hot topic symposia session during the Pediatric Academic Societies (PAS) 2021 Virtual Meeting will address the persistent controversies and questions in preterm infant nutrition. After six years of interdisciplinary expert discussion and critical evidence review, the 2014 vision to develop evidence-informed guidance for the nutritional care of preterm infants has come to fruition. The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the Academy of Nutrition and Dietetics (AND) initiated this multiphase process involving expert physician, dietitian, and pharmacology scientists. The first phase, Pre-B, addressed the existing evidence and research ...

Circadian rhythm research could turn early birds into night owls

Circadian rhythm research could turn early birds into night owls
2021-05-04
WASHINGTON, May 4, 2021 -- How body clocks work could lead to science that can turn an early bird into a night owl or vice versa as well as other advances, like helping crops grow all year long. In Applied Physics Reviews, by AIP Publishing, scientists at Penn State report on their work advancing knowledge about circadian rhythms, the natural process that governs sleep and waking patterns in humans, animals, and plants. Researchers have identified a set of genes, called clock genes, that control these rhythms. But a more complicated network of genes than previously known appears related to circadian rhythms. More fully ...

LAST 30 PRESS RELEASES:

Modeling broader effects of wildfires in Siberia

Researchers find oldest undisputed evidence of Earth’s magnetic field

Eric and Wendy Schmidt announce 2024 Schmidt Science Fellows

Paclitaxel-induced immune dysfunction and activation of transcription factor AP-1 facilitate Hepatitis B virus replication

Single-walled carbon nanotubes doped with ‘nitrogen’ enhance the performance of secondary battery anode

Pioneering the future of urban traffic: The revolutionary spatiotemporal-restricted a* algorithm

First-ever combined heart pump and pig kidney transplant gives new hope to patient with terminal illness

FAU receives grant to examine role of pet dogs on military adolescents

COVID-19 pandemic alters view that doctors are obligated to provide care

This salt battery harvests osmotic energy where the river meets the sea

On the trail of deepfakes, Drexel researchers identify ‘fingerprints’ of AI-generated video

Virtual reality can motivate people to donate to refugee crises regardless of politics

Holographic displays offer a glimpse into an immersive future

Novel Au-BiFeO3 nanostructures for efficient and sustainable degradation of pollutants

It takes two to TANGO: New strategy to tackle fibrosis and scarring

Researchers aim to analyze pangenomes using quantum computing

Ready and vigilant: immune cells on standby

Securing competitiveness of energy-intensive industries through relocation: The pulling power of renewables

CAR T cell therapy targeting HER2 antigen shows promise against advanced sarcoma in phase I trial

Social change may explain decline in genetic diversity of the Y chromosome at the end of the Neolithic period

Aston University research finds that social media can be used to increase fruit and vegetable intake in young people

A vaccine to fight antibiotic resistance

European Hormone Day 2024: Endocrine community unites to raise public awareness and push for policy action on hormone health

Good heart health in middle age may preserve brain function among Black women as they age

The negative effects of racism impact sleep in adolescents

Study uses wearable devices to examine 3- to 6-year-olds’ impulsivity, inattentiveness

Will future hurricanes compromise New England forests’ ability to store and sequester carbon?

Longest study to date assesses cognitive impairment over time in adults with essential tremor

Does a woman’s heart health affect cognition in midlife?

Unveiling the mysteries of cell division in embryos with timelapse photography

[Press-News.org] Immunomics: A conversation on the future of diagnostics with Ramy Arnaout