(Press-News.org) Mitochondria - the 'batteries' that power our cells - play an unexpected role in common diseases such as type 2 diabetes and multiple sclerosis, concludes a study of over 350,000 people conducted by the University of Cambridge.
The study, published today in Nature Genetics, found that genetic variants in the DNA of mitochondria could increase the risk of developing these conditions, as well influencing characteristics such as height and lifespan.
There was also evidence that some changes in mitochondrial DNA were more common in people with Scottish, Welsh or Northumbrian genetic ancestry, implying that mitochondrial DNA and nuclear DNA (which accounts for 99.9% of our genetic make-up) interact with each other.
Almost all of the DNA that makes up the human genome - the body's 'blueprint' - is contained within the nuclei of our cells. Among other functions, nuclear DNA codes for the characteristics that make us individual as well as for the proteins that do most of the work in our bodies.
Our cells also contain mitochondria, often referred to as 'batteries', which provide the energy for our cells to function. They do this by converting the food that we eat into ATP, a molecule capable of releasing energy very quickly. Each of these mitochondria is coded for by a tiny amount of 'mitochondrial DNA'. Mitochondrial DNA makes up only 0.1% of the overall human genome and is passed down exclusively from mother to child.
While errors in mitochondrial DNA can lead to so-called mitochondrial diseases, which can be severely disabling, until now there had been little evidence that these variants can influence more common diseases. Several small-scale studies have hinted at this possibility, but scientists have been unable to replicate their findings.
Now, a team at the University of Cambridge has developed a new technique to study mitochondrial DNA and its relation to human diseases and characteristics in samples taken from 358,000 volunteers as part of UK Biobank, a large-scale biomedical database and research resource.
Dr Joanna Howson, who carried out the work while at the Department of Public Health and Primary Care at the University of Cambridge, said: "Using this new method, we've been able to look for associations between the numerous features that have been recorded for participants of UK Biobank and see whether any correlate with mitochondrial DNA.
"Aside from mitochondrial diseases, we don't generally associate mitochondrial DNA variants with common diseases. But what we've shown is that mitochondrial DNA - which we inherit from our mother - influences the risk of some diseases such as type 2 diabetes and MS as well as a number of common characteristics."
Among those factors found to be influenced by mitochondrial DNA are: type 2 diabetes, multiple sclerosis, liver and kidney function, blood count parameters, life span and height. While some of the effects are seen more extremely in patients with rare inherited mitochondrial diseases - for example, patients with severe disease are often shorter than average - the effect in healthy individuals tends to be much subtler, likely accounting for just a few millimetres' height difference, for example.
There are several possible explanations for how mitochondrial DNA exerts its influence. One is that changes to mitochondrial DNA lead to subtle differences in our ability to produce energy. However, it is likely to be more complicated, affecting complex biological pathways inside our bodies - the signals that allow our cells to operate in a coordinated fashion.
Professor Patrick Chinnery from the MRC Mitochondrial Biology Unit at Cambridge said: "If you want a complete picture of common diseases, then clearly you're going to need to factor in the influence of mitochondrial DNA. The ultimate aim of studies of our DNA is to understand the mechanisms that underlie these diseases and find new ways to treat them. Our work could help identify potential new drug targets."
Unlike nuclear DNA, which is passed down from both the mother and the father, mitochondria DNA is inherited exclusively from the mother. This suggests that the two systems are inherited independently and hence there should be no association between an individual's nuclear and mitochondrial DNA - however, this was not what the team found.
The researchers showed that certain nuclear genetic backgrounds are associated preferentially with certain mitochondrial genetic backgrounds, particularly in Scotland, Wales and Northumbria. This suggests that our nuclear and mitochondrial genomes have evolved - and continue to evolve - side-by-side and interact with each other.
One reason that may explain this is the need for compatibility. ATP is produced by a group of proteins inside the mitochondria, called the respiratory chain. There are over 100 components of the respiratory chain, 13 of which are coded for by mitochondrial DNA; the remainder are coded for by nuclear DNA. Even though proteins in the respiratory chain are being produced by two different genomes, the proteins need to physically interlock like pieces of a jigsaw.
If the mitochondrial DNA inherited by a child was not compatible with the nuclear DNA inherited from the father, the jigsaw would not fit together properly, thereby affecting the respiratory chain and, consequently, energy production. This might subtly influence an individual's health or physiology, which over time could be disadvantageous from an evolutionary perspective. Conversely, matches would be encouraged by evolution and therefore become more common.
This could have implications for the success of mitochondrial transfer therapy - a new technique that enables scientists to replace a mother's defective mitochondria with those from a donor, thereby preventing her child from having a potentially life-threatening mitochondrial disease.
"It looks like our mitochondrial DNA is matched to our nuclear DNA to some extent - in other words, you can't just swap the mitochondria with any donor, just as you can't take a blood transfusion from anyone," explained Professor Chinnery. "Fortunately, this possibility has already been factored into the approach taken by the team at Newcastle who have pioneered this therapy."
INFORMATION:
The study was funded by Wellcome and the British Heart Foundation. Additional support was provided by the NIHR Cambridge Biomedical Research Centre.
Reference
Yonova-Doing, E et al. An atlas of mitochondrial DNA genotype-phenotype associations in the UK Biobank. Nature Genetics; 17 May 2021; DOI: 10.1038/s41588-021-00868-1
Scientists have succeeded in dating some of the oldest stars in our galaxy with unprecedented precision by combining data from the stars' oscillations with information about their chemical composition.
The team led by researchers at the University of Birmingham, surveyed around a hundred red giant stars, and were able to determine that some of these were originally part of a satellite galaxy called Gaia-Enceladus, which collided with the Milky Way early in its history.
The results, published in Nature Astronomy, revealed that the group of stars surveyed all have similar ages, or are slightly younger than the majority of the stars known to have started their lives within the Milky Way. This corroborates existing theories suggesting the Milky Way had already started forming a significant ...
In the largest genetic study of bipolar disorder to date, researchers have identified 64 regions of the genome containing DNA variations that increase risk of bipolar disorder - more than double the number previously identified.
The research team also found overlap in the genetic bases of bipolar disorder and other psychiatric disorders. Furthermore, the study supports a role of sleep habits, alcohol, and substance usage in the development of bipolar disorder, although further research is needed to confirm these findings. The study results are published May 17 in Nature Genetics.
Bipolar disorder, a complex psychiatric disorder characterized by recurrent episodes of severely high and low mood, affects an estimated 40 to 50 million people worldwide. It typically begins ...
Researchers from the Francis Crick Institute, Royal Marsden, UCL and Cruces University Hospital have found that cells from different parts of kidney tumours behave differently, and surprisingly, cells within the centre of a tumour are the most aggressive and have the highest chance of spreading around the body.
Cancers can spread to other parts of the body, with cells taking hold as secondary tumours which make the disease much harder to treat. Understanding the mechanics of this spread, a process called metastasis, could lead to new treatments that block this migration.
In their multidisciplinary study ...
COLUMBUS, Ohio - New research provides the best evidence to date into the timing of how our early Milky Way came together, including the merger with a key satellite galaxy.
Using relatively new methods in astronomy, the researchers were able to identify the most precise ages currently possible for a sample of about a hundred red giant stars in the galaxy.
With this and other data, the researchers were able to show what was happening when the Milky Way merged with an orbiting satellite galaxy, known as Gaia-Enceladus, about 10 billion years ago.
Their results were published today (May ...
Patients with both diabetes and heart failure who were treated with sotagliflozin, a novel investigational drug for diabetes, for a median of nine to 16 months experienced reductions of 22% to 43% in the risk of death or worsening heart failure compared with similar patients who were treated with a placebo. The drug was effective in patients with all forms of heart failure, including those whose heart muscle is abnormally stiff (preserved ejection fraction) and for whom there is currently no effective treatment, according to research presented at the American College of Cardiology's 70th Annual Scientific Session.
"Treatment with sotagliflozin robustly and significantly reduced cardiovascular adverse events across the full spectrum of ...
Researchers at the Francis Crick Institute have found out how microscopic structures called lipid droplets may help to prevent a high-fat diet causing kidney damage. The work in fruit flies, published in PLoS Biology opens up a new research avenue for developing better treatments for chronic kidney disease.
Eating foods high in fats can cause inflammation and metabolic stress in the kidneys, leading to chronic disease, which in severe cases requires dialysis or a transplant. And with obesity on the rise globally, it's a growing problem - around 10% of people in the UK are living with chronic kidney ...
The University of Kent's School of Physical Sciences, in collaboration with the Science and Technology Facilities Council (STFC) and the Universities of Cardiff, Durham and Leeds, have developed an algorithm to train computers to analyse signals from subatomic particles embedded in advanced electronic materials.
The particles, called muons, are produced in large particle accelerators and are implanted inside samples of materials in order to investigate their magnetic properties. Muons are uniquely useful as they couple magnetically to individual atoms inside the material and then emit a signal detectable by researchers to obtain information on that magnetism.
This ability to ...
A program designed to improve hospital care for patients with heart failure, the leading cause of hospitalization among adults over age 65, did not bring additional benefits beyond existing hospital quality improvement programs in a randomized controlled trial presented at the American College of Cardiology's 70th Annual Scientific Session.
Heart failure is a condition in which the heart becomes too weak or too stiff to pump blood effectively to the rest of the body. It causes symptoms such as swelling and fluid retention, shortness of breath and coughing.
In the CONNECT-HF study, one group of hospitals received additional auditing and ...
For the first time, Penn State researchers have identified a gene that controls flowering in cacao, a discovery that may help accelerate breeding efforts aimed at improving the disease-ridden plant, they suggested.
Characterizing the Flowering Locus T gene in cacao, responsible for the production of florigen -- a protein that triggers flowering in most plants -- is important, according to study co-author Mark Guiltinan, J. Franklin Styer Professor of Horticultural Botany and professor of plant molecular biology. He expects this advancement to enable scientists to develop disease-resistant trees faster, which is critical because 20% to 30% ...
Some words sound like what they mean. For example, "slurp" sounds like the noise we make when we drink from a cup, and "teeny" sounds like something that is very small. This resemblance between how a word sounds and what it means is known as iconicity.
In her lab at the University of Miami, Lynn Perry, an associate professor in the College of Arts and Sciences Department of Psychology, previously found that children tend to learn words higher in iconicity earlier in development then they do words lower in iconicity. She also found that adults tend to use more iconic words when they speak to children than when they speak to other adults.
"That got us curious about why," said Stephanie Custode, a doctoral student in psychology, who ...