PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

An updated understanding of how to synthesize value-added chemicals

2021-05-20
(Press-News.org) Researchers have long been interested in finding ways to use simple hydrocarbons, chemicals made of a small number of carbon and hydrogen atoms, to create value-added chemicals, ones used in fuels, plastics, and other complex materials. Methane, a major component of natural gas, is one such chemical that scientists would like to find to ways to use more effectively, since there is currently no environmentally friendly and large-scale way to utilize this potent greenhouse gas.

A new paper in Science provides an updated understanding of how to add functional groups onto simple hydrocarbons like methane. Conducted by graduate students Qiaomu Yang and Yusen Qiao, postdoc Yu Heng Wang, and led by professors Patrick J. Walsh and Eric J. Schelter, this new and highly detailed mechanism is a crucial step towards designing the next generation of catalysts and finding scalable approaches for turning greenhouse gases into value-added chemicals.

In 2018, a paper published in Science described a mechanism for adding functional groups onto methane, ethane, and other hydrocarbons at room temperature using a cerium-based photocatalyst. The ability to use earth-abundant metals like cerium to create value-added chemicals was an exciting prospect, the researchers say. However, there were aspects of this study that Schelter and his group, who have been working with cerium for a number of years, wanted to understand more thoroughly.

"There were some things in the original paper that we thought were interesting, but we didn't necessarily agree with the conclusions based on the data that they were reporting," Schelter says. "We had an idea that what was happening in terms of the mechanism of the reaction, the steps that were involved and the catalyst that was operative for their chemistry, was different from what they were reporting."

To run the experiments and collect the data they would need to support a new hypothesis, Schelter and Walsh applied for a seed grant from the University of Pennsylvania's Vagelos Institute for Energy Science and Technology. This funding supported a new collaboration between Schelter and Walsh, allowing the researchers to purchase specialized equipment and hire Yu Heng Wang, a former Penn postdoc who is now an assistant professor at National Tsinghua University in Taiwan.

Thanks to the Vagelos Institute support, the Schelter and Walsh groups were able to combine their complementary expertise in inorganic and organic chemistry and to conduct experiments to obtain data required to propose a new mechanism. This included synthesizing new chemicals, studying reaction rates, looking at how the photocatalyst reacted with different isotopes, and computational analysis. The researchers also isolated the proposed reaction intermediate and were able to obtain its crystal structure, an additional challenge considering that many of the compounds in this study were highly air- and moisture-sensitive.

"We are using conventional techniques to understand the system better and to give a clear mechanism," Yang says about their approach. "Here, we are mostly using the inorganic perspective with different techniques to understand the mechanisms of the organic reaction. So, it's a collaboration of inorganic and organic perspectives to understand the mechanism."

After more than two years of work, the researchers were able to propose a revised mechanism that highlights the essential role of chlorine atoms. While the previous study implicated an alcohol-based intermediate, this latest study found that chlorine radicals, atoms with unpaired electrons that make them highly reactive, form a selective chemical "trap" in the photocatalyst that can give rise to different products.

"I think the hardest part was to understand why the reactivity was happening, and we had to approach that with some unconventional thinking of these intermediate complexes," says Walsh. "The behavior of the intermediates fits a pattern that people attribute to a radical based on oxygen, but in fact it's really a chlorine radical that's the active species, activating the alcohol to make it look like it's a radical derived from the alcohol."

Having a detailed understanding of this chemical reaction is a crucial step towards improving existing catalysts and making these and other chemical reactions more efficient. "In order to rationally develop the next generation of catalysts, we have to understand what the current generation is doing," says Walsh. "With this information, we and others can now build on this revised mechanism and reaction pathway to push the science forward."

And while there is more work to be done towards finding a fast, scalable reaction for methane transformation, having a detailed understanding of the mechanisms that drive this specific reaction is essential to both reducing greenhouse gas emissions and being able to use methane to create value-added products, the researchers say.

"Chemistry is at its most elegant when we can refine knowledge through expanded insight," says Schelter. "The contribution here is about getting the right model and using it to advance to the next generation of catalysts that will be even better than the current one."

INFORMATION:

This research was supported by Penn's Vagelos Institute for Energy Science and Technology, the Center for Actinide Science and Technology, an Energy Frontier Research Center funded by the U.S. Department of Energy (Grant DE-SC0016568), and the National Science Foundation (Grant CHE-1902509).



ELSE PRESS RELEASES FROM THIS DATE:

Thin is now in to turn terahertz polarization

Thin is now in to turn terahertz polarization
2021-05-20
HOUSTON - (May 20, 2021) - It's always good when your hard work reflects well on you. With the discovery of the giant polarization rotation of light, that is literally so. The ultrathin, highly aligned carbon nanotube films first made by Rice University physicist Junichiro Kono and his students a few years ago turned out to have a surprising phenomenon waiting within: an ability to make highly capable terahertz polarization rotation possible. This rotation doesn't mean the films are spinning. It does mean that polarized light from a laser or other source can now be manipulated in ways that were previously out of reach, making it completely visible or completely opaque with a device that's extremely ...

Survey measures health care delays during pandemic's beginning

2021-05-20
At the start of the COVID-19 outbreak, a University of Illinois Chicago researcher conducted a survey asking respondents if they experienced health care delays because of the pandemic. In addition to learning about the types of delays, the study also presented a unique opportunity to capture a historic moment at the pandemic's beginning.  Elizabeth Papautsky, UIC assistant professor of biomedical and health information sciences, is first author on "Characterizing Healthcare Delays and Interruptions in the U.S. During the COVID-19 Pandemic Using Data from an Internet-Based Cross-Sectional ...

New research maps COVID-19 dispersal dynamics in New York's first wave of epidemic

New research maps COVID-19 dispersal dynamics in New Yorks first wave of epidemic
2021-05-20
During the first phase of the COVID-19 epidemic, New York City experienced high prevalence compared to other U.S. cities, yet little is known about the circulation of SARS-CoV-2 within and among its boroughs. A study published in PLOS Pathogens by Simon Dellicour at Université Libre de Bruxelles, Belgium, Ralf Duerr and Adriana Heguy at New York University, USA, and colleagues describe the dispersal dynamics of COVID-19 viral lineages at the state and city levels, illustrating the relatively important role of the borough of Queens as a SARS-CoV-2 transmission hub. To better understand how the virus dispersed throughout New York ...

Global pollen samples reveal vegetation rate of change

Global pollen samples reveal vegetation rate of change
2021-05-20
Ancient pollen samples and a new statistical approach may shed light on the global rate of change of vegetation and eventually on how much climate change and humans have played a part in altering landscapes, according to an international team of researchers. "We know that climate and people interact with natural ecosystems and change them," said Sarah Ivory, assistant professor of geosciences and associate in the Earth and Environmental Systems Institute, Penn State. "Typically, we go to some particular location and study this by teasing apart these influences. In particular, we know that the impact people have goes back much earlier than what is typically ...

Compound commonly found in candles lights the way to grid-scale energy storage

Compound commonly found in candles lights the way to grid-scale energy storage
2021-05-20
A compound used widely in candles offers promise for a much more modern energy challenge--storing massive amounts of energy to be fed into the electric grid as the need arises. Scientists at the U.S. Department of Energy's Pacific Northwest National Laboratory have shown that low-cost organic compounds hold promise for storing grid energy. Common fluorenone, a bright yellow powder, was at first a reluctant participant, but with enough chemical persuasion has proven to be a potent partner for energy storage in flow battery systems, large systems that store energy for the grid. Development of such storage is critical. When the grid goes offline due to severe weather, for instance, the large batteries under ...

Global acceleration in rates of vegetation change

Global acceleration in rates of vegetation change
2021-05-20
Wherever ecologists look, from tropical forests to tundra, ecosystems are being transformed by human land use and climate change. A hallmark of human impacts is that the rates of change in ecosystems are accelerating worldwide. Surprisingly, a new study, published today in Science, found that these rates of ecological change began to speed up many thousands of years ago. "What we see today is just the tip of the iceberg" noted co-lead author Ondrej Mottl from the University of Bergen (UiB). "The accelerations we see during the industrial revolution and modern periods have a deep-rooted history stretching back in time." Using a global network of over 1,000 fossil pollen records, the team found - and expected to find - a first peak ...

A new form of carbon

A new form of carbon
2021-05-20
Carbon exists in various forms. In addition to diamond and graphite, there are recently discovered forms with astonishing properties. For example graphene, with a thickness of just one atomic layer, is the thinnest known material, and its unusual properties make it an extremely exciting candidate for applications like future electronics and high-tech engineering. In graphene, each carbon atom is linked to three neighbours, forming hexagons arranged in a honeycomb network. Theoretical studies have shown that carbon atoms can also arrange in other flat network patterns, while still binding to three neighbours, but none of these predicted networks had been realized until now. Researchers at the University of Marburg ...

ALMA discovers the most ancient galaxy with spiral morphology

ALMA discovers the most ancient galaxy with spiral morphology
2021-05-20
Analyzing data obtained with the Atacama Large Millimeter/submillimeter Array (ALMA), researchers found a galaxy with a spiral morphology by only 1.4 billion years after the Big Bang. This is the most ancient galaxy of its kind ever observed. The discovery of a galaxy with a spiral structure at such an early stage is an important clue to solving the classic questions of astronomy: "How and when did spiral galaxies form?" "I was excited because I had never seen such clear evidence of a rotating disk, spiral structure, and centralized mass structure in a distant galaxy in any previous ...

Accounting for finance is key for climate mitigation pathways

2021-05-20
A new study published in the journal Science, highlights the opportunity to complement current climate mitigation scenarios with scenarios that capture the interdependence among investors' perception of future climate risk, the credibility of climate policies, and the allocation of investments across low- and high-carbon assets in the economy. Climate mitigation scenarios are key to understanding the transition to a low-carbon economy and inform climate policies. These scenarios are also important for financial investors to assess the risk of missing out on the transition or making the transition happen too late and in a disorderly fashion. In this respect, the scenarios developed by the platform of financial authorities ...

Total deaths due to COVID-19 underestimated by 20% in US counties

2021-05-20
Deaths caused by indirect effects of the pandemic emphasize the need for policy changes that address widening health and racial inequities. More than 15 months into the pandemic, the U.S. death toll from COVID-19 is nearing 600,000. But COVID-19 deaths may be underestimated by 20%, according to a new, first-of-its-kind study from Boston University School of Public Health (BUSPH), the University of Pennsylvania, and the Robert Wood Johnson Foundation. Published in the journal PLOS Medicine, the study uses data from the National Center for Health Statistics (NCHS) and the Centers for Disease Control and Prevention ...

LAST 30 PRESS RELEASES:

University of Phoenix College of Doctoral Studies releases white paper on mentoring programs to strengthen worker autonomy and competitive edge

International scientists issue State of the Climate Report, highlight mitigation strategies

“State of the climate” 2025: Earth’s vital signs worsen, science shows options for livable future

New nanomedicine wipes out leukemia in animal study

National TRAP Program targets ghostly issue with second round of coastal clean up funding

Six scientists receive AFAR grants for junior faculty

Climate report: Earth on dangerous path but rapid action can avert the worst outcomes

American Pediatric Society announces Bruce D. Gelb, MD, as recipient of its prestigious 2026 APS John Howland Award

Friendships can ease loneliness for dementia caregivers

Researchers pose five guiding questions to improve the use of artificial intelligence in physicians’ clinical decision-making

Global call to “Help the Kelp” with US $14 billion conservation target

Artificial tongue uses milk to determine heat level in spicy foods

IU Kelley Futurecast: AI and energy infrastructure may buoy US economy in 2026

The biggest threats to maintaining fat bike trails: climate change and volunteer burnout

AI models for drug design fail in physics

Practice pattern of aerosol drug therapy in acute respiratory distress syndrome patients: An aero-in-ICU study

GLIS model as a predictor of outcomes in older adults with heart failure

Molecules in motion: pioneering the era of supramolecular robotics

Faster and more reliable crystal structure prediction of organic molecules

Thankful at work: A two-week gratitude journal boosts employee engagement

Fibroblasts: Hidden drivers of heart failure progression

IOCB Prague unveils a fundamentally faster, more affordable way to produce quantum nanodiamonds

Artificial intelligence takes the lead in revolutionizing cancer research explored at NFCR’s 2025 Global Summit and Award Ceremonies for Cancer Research and Entrepreneurship.

Switching memories on and off with epigenetics

This is your brain without sleep

3D DNA looping discovery in rice paves the way for higher yields with less fertilizer

Four subgroups of PCOS open up for individualized treatment

Perovskites reveal ultrafast quantum light in new study

New clues on how physical forces spread in neurons

Heart ‘blueprint’ reveals origins of defects and insights into fetal development

[Press-News.org] An updated understanding of how to synthesize value-added chemicals