(Press-News.org) Discovered by Victor Hess in 1912, cosmic rays, relativisitic particles that shower Earth, contribute a signicant part of the energy density in the universe and carries unambiguous informations on various astrophysical processes . Yet until now, origin of cosmic rays is still a mystery.
A key problem in understanding the origin of cosmic rays is the searching for the acceleration site up to or even beyond Ultra-high energy (UHE). Such extreme accelerators are dubbed as PeVatrons. However, composed of subatomic particles, such as protons or atomic nuclei, cosmic rays are charged and lose the direction information in propagating in the magnetic field in the interstellar medium, which make it impossible to identify the PeVatrons from direct cosmic ray measurement. On the other hand, UHE γ-rays, those fall in peta-electronvolt (1015 eV) range, are produced unavoidably inside or in the vicinity of PeVatrons. γ-rays are not charged and travel straight , thus they can be regarded as the straightforward signature to identify PeVatrons.
A new observatory, the Large High Altitude Air Shower Observatory (LHAASO) located at Sichuan, China, detected dozen Ultra-high Energy gamma-ray sources, opening a new window into the γ-ray sky, which indicate that the existence of a population of PeVatrons in our Galaxy.
In this article, though not fully installed, the half Kilometer Square Array (KM2A), one of the three interconnected detectors that constitute LHAASO, reported 12 PeVatrons with the statistical significance greater than 7 standard devition after observation using 11 months data. Of these sources, two have been detected with energy over 0.8 PeV, an energy equivilant to accelerate an electron with electric potential of 0.8 million billion electronvolts, and one with highest energy exceeded 1.4 PeV.
The 12 γ-ray emitting regions identified by LHAASO prompts the presence of active or recent PeVatrons. Team led by Professor YANG Ruizhi from the University of Science and Technology of China discussed some possible candidates, including pulsar wind nebulae, supernova remnants and star-forming regions, with multi-wavelength data.
To support the detection of UHE γ-rays, the team led by Professor LI Cheng from the University was responsible for the design and quality assurance/check of over 3000 high-dynamic-range large-size photodetectors for muon detectors of KM2A and Water Cherenkov Detector Array (WCDA), another component of LHAASO.
The team led by Professor AN Qi from the University designed, tested, and installed the readout electronics system for the 8'' and 20'' PMTs in WCDA, which achieves high precsion time and charge measurement over a large input dynamic range of 1 Photon Electron (P.E.) ~4000/2000 P.E..
Full article was published on Nature.
With comprehensive multi-wavelength data, researcher will be able to firmly identify and locate PeVatrons in the future. Longer observation and full installation of LHAASO is also expected to provide more detailed information on reported PeVatrons and to discover even more PeVatrons, which would advance the understanding of the origin of cosmic rays.
INFORMATION:
Using intermittent electric energy to convert excessive CO2 into C2 products, such as ethylene and ethanol, is an effective strategy to mitigate the greenhouse effect. Copper (Cu) is the only single metal catalyst which can converts CO2 into C2 products by electrochemical method, but with undesirable selectivity of C2 product. Therefore, how to improve the conversion efficiency of Cu-based catalysts for reducing CO2 to C2 product has attracted great attention.
Recently, a research team led by Prof. Min Liu from Central South University, China designed a Cu-Pd bimetallic electrocatalyst possessing CuPd(100) interface which can lower the energy barrier of C2 product generation. The electrocatalyst was obtained through using ...
WASHINGTON--People who eat too many refined carbs and fatty meats for dinner have a higher risk of heart disease than those who eat a similar diet for breakfast, according to a nationwide study published in the Endocrine Society's Journal of Clinical Endocrinology & Metabolism.
Cardiovascular diseases like congestive heart failure, heart attack and stroke are the number one cause of death globally, taking an estimated 17.9 million lives each year. Eating lots of saturated fat, processed meats and added sugars can raise your cholesterol and increase your risk of heart disease. Eating a heart-healthy diet with more whole carbohydrates like vegetables and grains and less meat can significantly offset the risk of cardiovascular disease.
"Meal timing along with food quality are important factors ...
The farming of livestock to feed the global appetite for animal products greatly contributes to global warming. A new study however shows that emission intensity per unit of animal protein produced from the sector has decreased globally over the past two decades due to greater production efficiency, raising questions around the extent to which methane emissions will change in the future and how we can better manage their negative impacts.
Despite what we know about the environmental cost of livestock production, the global appetite for animal products such as meat, eggs, and dairy continues to grow. The livestock sector is in fact the largest source of manmade methane emissions globally, and these emissions are projected ...
A team of international researchers has found that the Tsimane indigenous people of the Bolivian Amazon experience less brain atrophy than their American and European peers. The decrease in their brain volumes with age is 70% slower than in Western populations. Accelerated brain volume loss can be a sign of dementia.
The study was published May 26, 2021 in the Journal of Gerontology, Series A: Biological Sciences and Medical Sciences.
Although people in industrialized nations have access to modern medical care, they are more sedentary and eat a diet high in saturated fats. In contrast, the Tsimane ...
UC San Francisco researchers have found a way to double doctors' accuracy in detecting the vast majority of complex fetal heart defects in utero - when interventions could either correct them or greatly improve a child's chance of survival - by combining routine ultrasound imaging with machine-learning computer tools.
The team, led by UCSF cardiologist Rima Arnaout, MD, trained a group of machine-learning models to mimic the tasks that clinicians follow in diagnosing complex congenital heart disease (CHD). Worldwide, humans detect as few as 30 to 50 percent of these conditions before birth. However, the combination of human-performed ultrasound ...
University of Virginia School of Medicine scientists have developed important new resources that will aid the battle against cancer and advance cutting-edge genomics research.
UVA's Chongzhi Zang, PhD, and his colleagues and students have developed a new computational method to map the folding patterns of our chromosomes in three dimensions from experimental data. This is important because the configuration of genetic material inside our chromosomes actually affects how our genes work. In cancer, that configuration can go wrong, so scientists want to understand ...
Hundreds of antibiotic resistant genes found in the gastrointestinal tracts of Danish infants
Danish one-year-olds carry several hundred antibiotic resistant genes in their bacterial gut flora according to a new study from the University of Copenhagen. The presence of these genes is partly attributable to antibiotic use among mothers during pregnancy.
An estimated 700,000 people die every year from antibiotic resistant bacterial infections and diseases. The WHO expects this figure to multiply greatly in coming decades. To study how antibiotic resistance occurs in humans' ...
The Hubble parameter is one of the central parameters in the modern cosmology. Their values inferred from the late-time observations are systematically higher than those from the early-time measurements by about 10%. This is called the "Hubble tension". To come to a robust conclusion, independent probes with accuracy at percent levels are crucial. With the self-calibration by the theory of general relativity, gravitational waves from compact binary coalescence open a completely novel observational window for Hubble parameter determination. Hence, it can shed some light on the Hubble tension. Depends on whether being associated with ...
A new rapid coronavirus test developed by KAUST scientists can deliver highly accurate results in less than 15 minutes.
The diagnostic, which brings together electrochemical biosensors with engineered protein constructs, allows clinicians to quickly detect bits of the virus with a precision previously only possible with slower genetic techniques. The entire set-up can work at the point of patient care on unprocessed blood or saliva samples; no laborious sample preparation or centralized diagnostic laboratory is required.
"The combination of state-of-the-art ...
Dust storms are often defined as catastrophic weather events where large amounts of dust particles are raised and transported by strong winds, characterized by weak horizontal visibility (< 1 km), suddenness, short duration, and severe destruction. Over the past few decades, the observed dust storms in northern China showed generally decreasing trends (Fig. 2), which could have made the dust storms "out of sight" of the public gradually. Yet a most recent strong dust storm event originated from Mongolia since mid-March this year exerted serious impacts on most areas in northern China, ...