PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Unveiling what governs crystal growth

Unveiling what governs crystal growth
2021-05-26
(Press-News.org) With brilliant colors and picturesque shapes, many crystals are wonders of nature. Some crystals are also wonders of science, with transformative applications in electronics and optics. Understanding how best to grow such crystals is key to further advances.

Scientists from the U.S. Department of Energy's (DOE) Argonne National Laboratory, along with three universities, have revealed new insights into the mechanism behind how gallium nitride crystals grow at the atomic scale.

Gallium nitride crystals are already in wide use in light-emitting diodes, better known as LEDs. They might also be applied to form transistors for high-power switching electronics to make electric grids more energy efficient and smarter. The use of such "smart grids," which could better balance high power within the overall system, might prevent people from losing power in severe storms.

"This work is a great example of the importance and power of probing a material while a process is underway. Quite often when we use such probes to study processes like synthesis, we find the story to be more complex than we originally thought and counter to conventional wisdom." -- Matt Highland, X-ray Sciences division, Argonne National Laboratory

The same technology could also make individual homes more energy efficient. And it could find use in optical communications, where lasers transmit information. Such information transfer can be more precise, faster and more secure than current capabilities.

Because of these diverse applications, scientists worldwide have been working to improve the process for growing gallium nitride crystals.

"Gallium nitride has a more complicated crystal structure than silicon, the typical crystalline material in electronics," said G. Brian Stephenson, an Argonne distinguished fellow in the Materials Science division. "When you grow this crystal, you thus get more fascinating behavior at the surface."

At the atomic scale, a growing gallium nitride crystal surface typically looks like a staircase of steps, where every stair is a layer of the crystal structure. Atoms are added to a growing crystal surface by attachment at the edges of the steps. Because of the gallium nitride crystal structure, the steps have alternating edge structures, labeled A and B. The different atomic structures lead to different growth behaviors of the A and B steps. Most theoretical models indicate that atoms accumulate faster on a B-type step, but experimental confirmation has been lacking.

"Because of the high temperatures and chemical atmosphere involved, it is not possible to examine the growth of gallium nitride with a standard electron microscope and test the model prediction," Stephenson said. For that, the team called upon the Advanced Photon Source (APS), a DOE Office of Science User Facility at Argonne.

The very high energy of the X-rays available at the APS with a beam only a few micrometers wide (beamline 12-ID-D) allowed the team to monitor the rate of gallium nitride growth on the crystal surface steps. These X-rays are an ideal probe since they are sensitive to atomic-scale structure and can penetrate the environment of the crystal at the high temperatures involved, over 1400 degrees Fahrenheit, while it is growing.

"Based on modeling, many had assumed that atoms probably build up faster on the type-B step," Stephenson said. "Imagine our surprise when it turned out to be step A. This suggests the chemistry of the growth process may be more complicated than previously thought."

"This work is a great example of the importance and power of probing a material while a process is underway," added Matt Highland, physicist in the X-ray Sciences division. "Quite often when we use such probes to study processes like synthesis, we find the story to be more complex than we originally thought and counter to conventional wisdom."

The results have obvious implications for refining the current understanding of the atomic-scale mechanisms of gallium nitride growth. This understanding has important practical implications for design of advanced gallium nitride devices by allowing better control of growth and incorporation of additional elements for improved performance. The findings can also be applied to growth of related crystals, including host semiconductor materials for quantum information science.

This research was supported by the DOE Office of Basic Energy Sciences. It was reported in Nature Communications, in a paper titled "In situ microbeam surface X-ray scattering reveals alternating step kinetics during crystal growth." In addition to Stephenson and Highland, other Argonne authors include Guangxu Ju, Dongwei Xu (now at Huazhong University of Science and Technology), Eastman and Peter Zapol. University participants include Carol Thompson (Northern Illinois University) and Weronika Walkosz (Lake Forest College).

INFORMATION:

About the Advanced Photon Source

The U. S. Department of Energy Office of Science's Advanced Photon Source (APS) at Argonne National Laboratory is one of the world's most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation's economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.


[Attachments] See images for this press release:
Unveiling what governs crystal growth

ELSE PRESS RELEASES FROM THIS DATE:

Opiate overdoses linked to poor mental health

Opiate overdoses linked to poor mental health
2021-05-26
The opioid epidemic is taking a deadly toll on people in disproportionate clusters from Cape Cod to San Diego, according to a new study by the University of Cincinnati. Fatal opiate overdoses are most prevalent among six states: Ohio, Pennsylvania, Kentucky, West Virginia, Indiana and Tennessee. But researchers identified 25 hot spots of fatal opioid overdoses nationwide using data from the Centers for Disease Control and Prevention. The study demonstrates how both widespread and localized the problem of substance use disorders can be, UC assistant professor and co-author Diego Cuadros ...

Deep oceans dissolve the rocky shell of water-ice planets

Deep oceans dissolve the rocky shell of water-ice planets
2021-05-26
What is happening deep beneath the surface of ice planets? Is there liquid water, and if so, how does it interact with the planetary rocky "seafloor"? New experiments show that on water-ice planets between the size of our Earth and up to six times this size, water selectively leaches magnesium from typical rock minerals. The conditions with pressures of hundred thousand atmospheres and temperatures above one thousand degrees Celsius were recreated in a lab and mimicked planets similar, but smaller than Neptune and Uranus. The mechanisms of water-rock interaction at the Earth's surface are well known, and the picture of ...

Keeping more ammonium in soil could decrease pollution, boost crops

Keeping more ammonium in soil could decrease pollution, boost crops
2021-05-26
Modern-day agriculture faces two major dilemmas: how to produce enough food to feed the growing human population and how to minimize environmental damage associated with intensive agriculture. Keeping more nitrogen in soil as ammonium may be one key way to address both challenges, according to a new paper in the Proceedings of the National Academy of Sciences (PNAS). Today's use of nitrogen fertilizers contributes heavily to greenhouse gas emissions, air pollution, and water pollution, but they are also essential for growing crops. Reducing this pollution is critical, but nitrogen use is likely to grow with increased food production. At ...

Widespread coral-algae symbioses endured historical climate changes

2021-05-26
UNIVERSITY PARK, Pa. -- One of the most important and widespread reef-building corals, known as cauliflower coral, exhibits strong partnerships with certain species of symbiotic algae, and these relationships have persisted through periods of intense climate fluctuations over the last 1.5 million years, according to a new study led by researchers at Penn State. The findings suggest that these corals and their symbiotic algae may have the capacity to adjust to modern-day increases in ocean warming, at least over the coming decades. Cauliflower corals -- which are in the genus Pocillopora -- are branching corals that provide critical habitat for one-quarter of the world's fish and many kinds of invertebrates, such as lobsters, sea urchins and giant clams. ...

Technology to monitor mental wellbeing might be right at your fingertips

2021-05-26
To help patients manage their mental wellness between appointments, researchers at Texas A&M University have developed a smart device-based electronic platform that can continuously monitor the state of hyperarousal, one of the signs of psychiatric distress. They said this advanced technology could read facial cues, analyze voice patterns and integrate readings from built-in vital signs sensors on smartwatches to determine if a patient is under stress. Furthermore, the researchers noted that the technology could provide feedback and alert care teams if there is an abrupt deterioration in the patient's mental health. "Mental health can change very rapidly, and a lot of these changes remain hidden from providers or counselors," said Dr. Farzan Sasangohar, assistant ...

This brain circuit signals when to stop eating; could regulating it help with obesity

2021-05-26
Like a good story, feeding has a beginning, a middle and an end. It begins with appetite prompting the search for food, continues with eating the food and it ends when satiation hits and the consumption of food is stopped. At Baylor College of Medicine, Dr. Qi Wu, Dr. Yong Han and their colleagues have uncovered new aspects of the last part of this story that relate to the little-known neural circuits and neurotransmitters involved in ending food consumption. The team discovered a novel circuit that connects a unique subset of dopamine-producing neurons with downstream neurons in the hindbrain (lower brainstem) ...

Few public-sector employees can contribute significantly to reaching sustainability goals

Few public-sector employees can contribute significantly to reaching sustainability goals
2021-05-26
The province of Quebec is one of only a few jurisdictions to enshrine sustainable development into law. In 2006 the then-Liberal government of Jean Charest adopted the END ...

Head and neck cancer cells hijack nearby healthy tissue, promoting further invasion of cancer cells

2021-05-26
Up to half of patients with head and neck squamous cell carcinoma will experience tumor recurrence or new tumors--tumors that often spread and are difficult to treat. A team of scientists led by the University of Michigan School of Dentistry identified a mechanism by which head and neck cancer cells subvert adjacent normal tissue, allowing small clusters of cancer cells to burrow beneath the healthy tissue. The team decided to look at this particular mechanism in head and neck cancer because a specific gene, DMBT1, appeared on a screen of genes that are silenced during oral cancer, said principal investigator Nisha D'Silva, the Donald A. Kerr Endowed ...

Grocery taxes put low-income families at risk for food insecurity

2021-05-26
ITHACA, N.Y. - Approximately one-third of all U.S. counties do not exempt grocery foods from the general sales tax, which means the lowest-income families living in those areas are most susceptible to food insecurity. New research from Cornell University finds that even a slight grocery tax-rate increase could be problematic for many. "An increase of 1% to 4% may sound small, but after several trips to the grocery store, the extra costs can create serious burdens for the lowest-income families," said co-author Harry Kaiser, professor of applied economics and management in the Charles H. Dyson School of Applied ...

Ultrasensitive blood test detects viral protein, confirms vaccine activates robust immune response

2021-05-26
The carefully orchestrated dance between the immune system and the viral proteins that induce immunity against COVID-19 may be more complex than previously thought. A new study by investigators at Brigham and Women's Hospital used an ultrasensitive, single-molecule array (Simoa) assay to detect extremely low levels of molecules in the blood and measured how these levels change over the days and weeks following vaccination. The team found evidence of circulating protein subunits of SARS-CoV-2, followed by evidence of the body mounting its immune response and then clearing the viral protein to below the level of single-molecule detection. Results are published in Clinical Infectious Diseases. "Because of ...

LAST 30 PRESS RELEASES:

Warming temperatures impact immune performance of wild monkeys, U-M study shows

Fine particulate air pollution may play a role in adverse birth outcomes

Sea anemone study shows how animals stay ‘in shape’

KIER unveils catalyst innovations for sustainable turquoise hydrogen solutions

Bacteria ditch tags to dodge antibiotics

New insights in plant response to high temperatures and drought

Strategies for safe and equitable access to water: a catalyst for global peace and security

CNIO opens up new research pathways against paediatric cancer Ewing sarcoma by discovering mechanisms that make it more aggressive

Disease severity staging system for NOTCH3-associated small vessel disease, including CADASIL

Satellite evidence bolsters case that climate change caused mass elephant die-off

Unique killer whale pod may have acquired special skills to hunt the world’s largest fish

Emory-led Lancet review highlights racial disparities in sudden cardiac arrest and death among athletes

A new approach to predicting malaria drug resistance

Coral adaptation unlikely to keep pace with global warming

Bioinspired droplet-based systems herald a new era in biocompatible devices

A fossil first: Scientists find 1.5-million-year-old footprints of two different species of human ancestors at same spot

The key to “climate smart” agriculture might be through its value chain

These hibernating squirrels could use a drink—but don’t feel the thirst

New footprints offer evidence of co-existing hominid species 1.5 million years ago

Moral outrage helps misinformation spread through social media

U-M, multinational team of scientists reveal structural link for initiation of protein synthesis in bacteria

New paper calls for harnessing agrifood value chains to help farmers be climate-smart

Preschool education: A key to supporting allophone children

CNIC scientists discover a key mechanism in fat cells that protects the body against energetic excess

Chemical replacement of TNT explosive more harmful to plants, study shows

Scientists reveal possible role of iron sulfides in creating life in terrestrial hot springs

Hormone therapy affects the metabolic health of transgender individuals

Survey of 12 European countries reveals the best and worst for smoke-free homes

First new treatment for asthma attacks in 50 years

Certain HRT tablets linked to increased heart disease and blood clot risk

[Press-News.org] Unveiling what governs crystal growth