Gravitational wave search no hum drum hunt
Scientists refine the search for enigmatic continuous grav waves
2021-05-27
(Press-News.org) The hunt for the never before heard "hum" of gravitational waves caused by mysterious neutron stars has just got a lot easier, thanks to an international team of researchers.
Gravitational waves have only been detected from black holes and neutron stars colliding, major cosmic events that cause huge bursts that ripple through space and time.
The research team, involving scientists from the LIGO Scientific Collaboration (LSC), Virgo Collaboration and the Centre for Gravitational Astrophysics (CGA) at The Australian National University (ANU), are now turning their eagle eye to spinning neutron stars to detect the waves.
Unlike the massive bursts caused by black holes or neutron stars colliding, the researchers say single spinning neutron stars have a bulge or "mountain" only a few millimetres high, which may produce a steady constant stream or "hum" of gravitational waves.
The researchers are using their methods that detected gravitational waves for the first time in 2015 to capture this steady soundtrack of the stars over the thunderous noise of massive black holes and dense neutron stars colliding.
They say it's like trying to capture the squeak of a mouse in the middle of a stampeding herd of elephants.
If successful, it would be the first detection of a gravitational wave event that didn't involve the collision of massive objects like black holes or neutron stars.
ANU Distinguished Professor, Susan Scott from the ANU Research School of Physics, said the collision of dense neutron stars sent a "burst" of gravitational waves rippling through the Universe.
"Neutron stars are mystery objects," Professor Scott, also a Chief Investigator with the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), said.
"We don't really understand what they are made up of, or how many types of them exist. But what we do know is that when they collide, they send incredible bursts of gravitational waves across the Universe.
"In contrast, the gentle hum of a spinning neutron star is very faint and almost impossible to detect."
Three new papers have just been published by the LSC and Virgo collaborations detailing the most sensitive searches to date for the faint hum of gravitational waves from spinning neutron stars.
Their work offers a "map to the potential El Dorado of gravitational waves."
"One of our searches targets young supernova remnants. These neutron stars, recently born, are more deformed, and should emit a stronger stream of gravitational waves," Dr Lilli Sun, from CGA and an Associate Investigator with OzGrav, said.
As these searches become more and more sensitive they are providing more detail than ever of the possible shape and make-up of neutron stars.
"If we can manage to detect this hum, we'll be able to look deep into the heart of a neutron star and unlock its secrets," Dr Karl Wette, a postdoctoral researcher with OzGrav and the CGA, said.
Professor Scott, who is also the leader of the General Relativity Theory and Data Analysis Group at ANU, added: "Neutron stars represent the densest form of matter in the Universe before a black hole will form."
"Searching for their gravitational waves allows us to probe nuclear matter states that simply can't be produced in laboratories on Earth."
INFORMATION:
FOR INTERVIEW:
Distinguished Professor Susan Scott
Research School of Physics
ANU College of Science
M: +61 450 522 939
E: susan.scott@anu.edu.au
Dr Karl Wette
Research School of Physics
ANU College of Science
M: +61 449 037 563
E: karl.wette@anu.edu.au
Dr Lilli Sun
Research School of Physics
ANU College of Science
M: +61 490 399 229
E: ling.sun@anu.edu.au
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-05-27
AMHERST, Mass. - New research by University of Massachusetts Amherst astronomer Daniel Wang reveals, with unprecedented clarity, details of violent phenomena in the center of our galaxy. The images, published recently in Monthly Notices of the Royal Astronomical Society, document an X-ray thread, G0.17-0.41, which hints at a previously unknown interstellar mechanism that may govern the energy flow and potentially the evolution of the Milky Way.
"The galaxy is like an ecosystem," says Wang, a professor in UMass Amherst's astronomy department, whose findings are a result of more than two decades of research. "We know the centers of galaxies are where the action is and play an enormous role in their evolution." And yet, whatever has ...
2021-05-27
Individuals with genetic high cholesterol, heart disease or both, who were infected with COVID-19 had more heart attacks according to new research by the FH Foundation. While previous studies have speculated about poorer outcomes if a person with genetic high cholesterol - called familial hypercholesterolemia (FH) contracts COVID-19, this study from the FH Foundation's national healthcare database is the first to demonstrate higher heart attack rates in the real world. Published online in the American Journal of Preventive Cardiology, the study also importantly confirms that COVID-19 increases heart attack rates in individuals with established atherosclerotic cardiovascular disease (ASCVD).
The FH Foundation performed an analysis of 55,412,462 individuals, separating groups into six ...
2021-05-27
Leesburg, VA, May 27, 2021--According to an open-access Editor's Choice article in ARRS' American Journal of Roentgenology (AJR), accurate prenatal diagnosis of severe placental accreta spectrum (PAS) disorder by imaging could help guide maternal counseling and selection between hysterectomy and uterine-preserving surgery.
"The findings suggest strong performance of placental bulge in diagnosing severe PAS on both ultrasound and MRI, with potentially relatively stronger performance on MRI," wrote corresponding author Manjiri Dighe from the department of radiology at the University of Washington School of Medicine. "Nonetheless, interobserver agreement remains suboptimal on both modalities."
On ultrasound and MRI alike, the placental bulge sign represents ...
2021-05-27
A small Japanese fishing community devastated by the Great East Japan Earthquake and Tsunami of 2011 managed to recover from the disaster through cooperative community activity despite the propensity for individualist-competitive behavior within fisheries - cooperative activity that continued many years later.
A social scientist who spent years interviewing fishers in the fishing hamlet of Isohama has discovered a long-standing continuum of competitive and collective endeavor amongst fishers, with potential ramifications for how government policy can better promote resilience in the wake of natural disasters and other calamities.
The findings appear in the journal of Disaster ...
2021-05-27
Using the circular vibration of surface acoustic waves, a collaborative research group have successfully controlled the magnetization of a ferromagnetic thin film.
Their research was published in the journal Nature Communications on May 10, 2021.
Essentially, acoustic waves are waves of atomic vibrations in a substance. When the waves propagate across the surface of a material, the vibration becomes circular. This circular motion, known as angular momentum, can help measure rotational motion.
Surface acoustic waves are utilized in bandpass filters in cell phones. The bandpass allows certain frequencies ...
2021-05-27
New Orleans, LA - A review study led by Maria D. Sanchez-Pino, PhD, an assistant research professor in the departments of Interdisciplinary Oncology and Genetics at LSU Health New Orleans' School of Medicine and Stanley S. Scott Cancer Center, advances knowledge about the connection between obesity-associated inflammation and cancer. The researchers suggest that inflammatory cells with immunosuppressive properties may act as a critical biological link between obesity and cancer risk, progression, and metastasis. The paper is published in the June 2021 issue of Obesity, available here.
Despite evidence showing that ...
2021-05-27
The study, which is published in the journal PLOS Biology, represents the most comprehensive mapping performed to date between neural activity recoded in vivo and identified neuron types. This major breakthrough may enable biologically meaningful computer modeling of the full neuronal circuit of the hippocampus, a region of the brain involved in memory function.
Circuits of the mammalian cerebral cortex are made up of two types of neurons: excitatory neurons, which release a neurotransmitter called glutamate, and inhibitory neurons, which release GABA (gamma-aminobutanoic acid), the main inhibitor of the central nervous system. "A balanced dialogue between the 'excitatory' and 'inhibitory' activities is critical for brain function. ...
2021-05-27
Exploiting the unusual metal-reducing ability of the iron-breathing bacterium Geobacter sulfurreducens, KAUST researchers have demonstrated a cheap and reliable way to synthesize highly active single-atom catalysts. The innovation, which could dramatically improve the efficiency and cost of hydrogen production from water, highlights the role nature can play in the search for new energy systems.
Many chemical reactions require a catalyst as a reactive surface where atoms or molecules are brought together with the right amount of energy to spark a chemical change. Water, for example, can be split into hydrogen and oxygen atoms by reacting on a pair of electrodes made of platinum and iridium oxide. The efficiency of the reaction, however, depends largely ...
2021-05-27
Water freezes and turns to ice when brought in contact with a cold surface - a well-known fact. However, the exact process and its microscopic details remained elusive up to know. Anton Tamtögl from the Institute of Experimental Physics at TU Graz explains: "The first step in ice formation is called 'nucleation' and happens in an incredibly short length of time, a fraction of a billionth of a second, when highly mobile individual water molecules 'find each other' and coalesce." Conventional microscopes are far too slow to follow the motion of water molecules and so it is impossible to use them to 'watch' how molecules combine on top of solid surfaces.
Findings turn previous understanding of ice formation upside down
With the help ...
2021-05-27
DURHAM, N.C. -- What makes preschoolers eat their veggies? Raise their hand? Wait their turn? "Because I say so" is a common refrain for many parents. But when it comes to getting kids to behave, recent research suggests that the voice of adult authority isn't the only thing that matters. Around age three, fitting in with the group starts to count big too.
That's the finding of a new study by Duke University researchers showing that, by their third birthday, children are more likely to go along with what others say or do for the sake of following the crowd, rather than acting out ...
LAST 30 PRESS RELEASES:
[Press-News.org] Gravitational wave search no hum drum hunt
Scientists refine the search for enigmatic continuous grav waves