PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Plant flowering in low-nitrogen soils: A mechanism revealed

Plant flowering in low-nitrogen soils: A mechanism revealed
2021-05-28
(Press-News.org) Scientists from Japan, Europe and the USA have described a pathway leading to the accelerated flowering of plants in low-nitrogen soils. These findings could eventually lead to increases in agricultural production.

Nitrogen is one of the three macronutrients required by plants for growth and development, along with phosphorus and potassium. Nitrogen-rich condition induces plant growth, particularly the growth of stems and leaves, while delaying flowering. On the other hand, in some plants, low-nitrogen conditions lead to a change from growth mode to reproductive mode, therefore accelerating flowering. However, the molecular mechanisms that regulate flowering under these conditions are not known.

A team of scientists led by Associate Professor Takeo Sato of Hokkaido University's Graduate School of Life Science has revealed the molecular mechanism responsible for the acceleration of flowering in Arabidopsis under low nitrogen conditions. Their findings were published in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Arabidopsis, a cruciferous plant, is well known as a model plant in biology and has an extensive database of its protein expression. In the current study, the team first identified a set of proteins involved in flowering that became active as a result of changes in nitrogen level. One of these was the gene regulation factor FLOWERING BHLH 4 (FBH4). Through experiments using FBH4 deficient plants, this protein was found to be responsible for accelerated flowering under low-nitrogen conditions.

Further investigation suggested that FBH4 is extensively phosphorylated by another protein called SnRK1. Low-nitrogen conditions suppress SnRK1 activity, which in turn results in the dephosphorylation of FBH4. The dephosphorylated FBH4 moves to the nucleus to activate genes responsible for flowering. Dephosphorylated FBH4 is also responsible for controlling the expression of other genes vital for plant survival under low nitrogen conditions, particularly those related to nitrogen recycling and remobilization.

The scientists concluded that, in response to inadequate nitrogen, Arabidopsis plants appear to precisely control gene expression related to developmental and metabolic processes required for flowering through FBH4. "The FBH family of genes is present in major crop plants," says Takeo Sato. "Crop plants exhibit early flowering under low-nitrogen conditions; if we can control FBH activities in these crop plants, it might be an effective way to sustainably increase agricultural production."

INFORMATION:


[Attachments] See images for this press release:
Plant flowering in low-nitrogen soils: A mechanism revealed

ELSE PRESS RELEASES FROM THIS DATE:

Prognostic value of troponin I in COVID-19 patients

Prognostic value of troponin I in COVID-19 patients
2021-05-28
Corona Virus Disease (COVID -19) patients primarily appear with respiratory issues and viral pneumonia. The patients may also present cardiovascular issues includes early signs of acute myocardial injury. The researchers from Sohag University, Egypt, found that cardiac troponin I (cTnI) can prove to be a gold-standard biomarker for necrosis and myocardial risk assessment in COVID-19 sufferers. The researchers aimed to assess the prognostic value of cTnI in COVID-19 sufferers. The study included ninety-two COVID-19 patients admitted in the El Helal ...

Reef-building corals and the microscopic algae within their cells evolve together

Reef-building corals and the microscopic algae within their cells evolve together
2021-05-28
UNIVERSITY PARK, Pa. -- The microscopic algae that live inside and provide nutrients to their reef-building coral hosts may be evolving in tandem with the corals they inhabit, so each partner is fine-tuned to meet one another's needs. A new study by Penn State biologists reveals that genetic differences within a species of these microalgal symbionts correspond to the coral species they inhabit, a discovery that could have implications for the conservation of these endangered corals. "Acroporid corals are some of the primary reef-building species in the Caribbean, providing protection to coastlines and habitat for economically important species," said Iliana Baums, professor of biology at Penn State and leader of the research team. "However, these corals are critically ...

Japan's hands-off formula in disciplining schoolchildren works. Is it worth a try elsewhere?

Japans hands-off formula in disciplining schoolchildren works. Is it worth a try elsewhere?
2021-05-28
A study examining Japanese schools' hands-off approach when children fight showed it could create opportunities for autonomy and encourage ownership of solutions, suggesting a new strategy in handling kids squabbles in other countries. Called mimamoru, the pedagogical strategy is a portmanteau of the Japanese words mi, meaning watch, and mamoru, meaning guard or protect. It is generally understood as "teaching by watching" -- where adults, including early childhood educators, intentionally let kids handle disagreements on their own to promote their learning through voluntary exploration and actions. While not an official part of Japan's early childhood ...

DNA-based material with tunable properties

DNA-based material with tunable properties
2021-05-28
While DNA is often idealised as the "molecule of life", it is also a highly sophisticated polymer that can be used for next-generation materials. Beyond the fact that it can store information, further fascinating aspects of DNA are its geometric and topological properties, such as knotting and super-coiling. Indeed, very much like a twisted telephone cord, DNA is often found coiled up inside bacteria and other cells and even knotted in viruses. Now, a collaboration of scientists from the Universities of Edinburgh, San Diego and Vienna have started to harness these properties to craft "topologically ...

UM research suggests social factors important for human-wildlife coexistence

UM research suggests social factors important for human-wildlife coexistence
2021-05-28
MISSOULA - In bear country, it's normal to find bruins munching down on temptations left out by humans - from a backyard apple tree to leftovers in the trash bin - but these encounters can cause trouble for humans and bears alike. One method to reduce human-bear conflicts is to secure attractants like garbage and livestock feed. While effective when implemented, this approach requires people to change their behavior, and that makes things a little more complicated. University of Montana researchers recently published a new study in the Journal of Wildlife Management analyzing why landowners do or don't secure attractants in bear country. ...

Proton's travel route in polymers could lead the way to clean fuels

Protons travel route in polymers could lead the way to clean fuels
2021-05-28
Ishikawa, Japan - Protons--subatomic particles with a positive electric charge--are one of the first particles to have formed after the universe began and are a constituent of every atom today out there. The movement of protons plays a key role in energy conversion processes, such as photosynthesis and respiration, in biological systems. In addition, proton conduction is an important factor for hydrogen fuel cells, which are often touted as the ideal clean energy source for the next generation. High proton conduction observed in biomaterials such as sugar and protein derivatives is attributed to the presence of proton-donating functional groups (substituents in a molecule that governs its characteristic ...

Pollen-sized technology protects bees from deadly insecticides

Pollen-sized technology protects bees from deadly insecticides
2021-05-28
ITHACA, N.Y. - A Cornell University-developed technology provides beekeepers, consumers and farmers with an antidote for deadly pesticides, which kill wild bees and cause beekeepers to lose around a third of their hives every year on average. An early version of the technology ¬- which detoxified a widely-used group of insecticides called organophosphates - is described in a new study, "Pollen-Inspired Enzymatic Microparticles to Reduce Organophosphate Toxicity in Managed Pollinators," published in Nature Food. The antidote delivery method has now been adapted to effectively ...

Study of Fe2+ ions contributes to further understanding of magnetoelectric coupling

Study of Fe2+ ions contributes to further understanding of magnetoelectric coupling
2021-05-28
The authors, Kirill Vasin and Mikhail Eremin, contribute to the theory of electronic and structural properties of FeCr2O4 ferrimagnet. Due to the specific quantum state and the symmetry of FeO4 fragment, it has unusual electric and magnetic properties. Below TOO~150K, it lowers the symmetry with the macroscopic deformations due to the cooperative Jahn-Teller effect. The coupling between macroscopic deformation of the crystal FeCr2O4 and its inner ions shifts was revealed. The team enhanced the microscopic crystal field theory for 3D electrons with Kleiner's correction - the effect of penetrating charges density. It allows to have better prediction of electron-deformation ...

Nanofibrous filters for PM2.5 filtration

2021-05-28
In a paper published in NANO, the author reviewed many kinds of nanofibrous filters including the component, preparation process, and application performances to provide directional guidance for improvement of the air purification field. Poor air quality is worldwide recognized as one of five health risks for causing adverse impacts on human health. Nanofibrous membrane is competitive to capture unclean nanoparticles since its lightweight, small diameter, high specific surface area, and easy to combine with functional additives. However, the trade-off between high filtration efficiency and low pressure drop posts challenge. The removal mechanisms of fibrous filters to nanoparticles follow ...

A novel nitrogen-doped dual-emission carbon dots as an effective fluorescent probe for ratiometric detection dopamine

2021-05-28
How to construct the dual emission nitrogen-doped carbon dots (CDs) by a simple method? Professor Lili Ren with her collaborators proposed a new strategy to prepare such materials which were used to the detection of dopamine. The traditional ratiometric fluorescence (FL) probe usually needs to combine different nanomaterials by chemical or physical methods and the manufacturing process is more complicated. While the dual-emission carbon dots (DECDs) can simplify the detection process. Therefore, it is of great significance to design a simple ratiometric fluorescence probe based on the DECDs for the accurate determination of DA concentration. ...

LAST 30 PRESS RELEASES:

Scientists design solar-responsive biochar that accelerates environmental cleanup

Construction of a localized immune niche via supramolecular hydrogel vaccine to elicit durable and enhanced immunity against infectious diseases

Deep learning-based discovery of tetrahydrocarbazoles as broad-spectrum antitumor agents and click-activated strategy for targeted cancer therapy

DHL-11, a novel prieurianin-type limonoid isolated from Munronia henryi, targeting IMPDH2 to inhibit triple-negative breast cancer

Discovery of SARS-CoV-2 PLpro inhibitors and RIPK1 inhibitors with synergistic antiviral efficacy in a mouse COVID-19 model

Neg-entropy is the true drug target for chronic diseases

Oxygen-boosted dual-section microneedle patch for enhanced drug penetration and improved photodynamic and anti-inflammatory therapy in psoriasis

Early TB treatment reduced deaths from sepsis among people with HIV

Palmitoylation of Tfr1 enhances platelet ferroptosis and liver injury in heat stroke

Structure-guided design of picomolar-level macrocyclic TRPC5 channel inhibitors with antidepressant activity

Therapeutic drug monitoring of biologics in inflammatory bowel disease: An evidence-based multidisciplinary guidelines

New global review reveals integrating finance, technology, and governance is key to equitable climate action

New study reveals cyanobacteria may help spread antibiotic resistance in estuarine ecosystems

Around the world, children’s cooperative behaviors and norms converge toward community-specific norms in middle childhood, Boston College researchers report

How cultural norms shape childhood development

University of Phoenix research finds AI-integrated coursework strengthens student learning and career skills

Next generation genetics technology developed to counter the rise of antibiotic resistance

Ochsner Health hospitals named Best-in-State 2026

A new window into hemodialysis: How optical sensors could make treatment safer

High-dose therapy had lasting benefits for infants with stroke before or soon after birth

‘Energy efficiency’ key to mountain birds adapting to changing environmental conditions

Scientists now know why ovarian cancer spreads so rapidly in the abdomen

USF Health launches nation’s first fully integrated institute for voice, hearing and swallowing care and research

Why rethinking wellness could help students and teachers thrive

Seabirds ingest large quantities of pollutants, some of which have been banned for decades

When Earth’s magnetic field took its time flipping

Americans prefer to screen for cervical cancer in-clinic vs. at home

Rice lab to help develop bioprinted kidneys as part of ARPA-H PRINT program award

Researchers discover ABCA1 protein’s role in releasing molecular brakes on solid tumor immunotherapy

Scientists debunk claim that trees in the Dolomites anticipated a solar eclipse

[Press-News.org] Plant flowering in low-nitrogen soils: A mechanism revealed