Stem cell drugs surprise researchers: Could lead to better drugs in the future
A study conducted in mice by researchers at the University of Copenhagen details their function providing new knowledge that may improve stem cell transplantation and lead to better drug design in the future
2021-05-28
(Press-News.org) Your immune system is always busy fighting incoming threats. It consists of a system of cells, and when there is a shortage of cells, it affects the performance of the immune system.
This is seen in e.g. cancer patients following chemotherapy. This is because chemotherapy targets all the cells in your body, including the stem cells in your bone marrow, which were meant to develop into new immune cells. This means that the immune system then lacks cells to fight new infections.
There are drugs that can harvest stem cells from the bone marrow, so that they can be returned to the patients after treatment. They then develop into new immune cells, enabling the body to once again fight incoming threats. But previously, we lacked detailed knowledge of how these drugs worked.
Now, a study conducted in mice by researchers at the University of Copenhagen demonstrates how the medicine works at the cell level - and, surprisingly, how one of the two applied and tested drugs is more effective than the other, despite the fact that the other drug, on paper, appears to be the most effective of the two. This discovery may not just help improve stem cell transplantation; it may also lead to improved drugs in the future.
"We have tested two drugs for stem cell transplantation which appear to have the same effect. What they do is block a receptor, causing the bone marrow to release stem cells into the blood. What the new study shows, though, is that they do not just block the receptor; one of the two drugs also affects other signalling pathways in the cell. And in short, that makes it more effective than the other of the two drugs," says PhD Student Astrid Sissel Jørgensen from the Department of Biomedical Sciences at the University of Copenhagen.
"We used to believe that all we had to do was block the receptor, and that the two drugs had the same effect. It now appears that there is more to it," she says.
The drugs tested by the researchers mobilize stem cells by acting as CXCR4 receptor antagonists. This means that they inhibit or reduce activity of the receptor. Several drugs target this receptor, including drugs inhibiting HIV replication.
"The drugs not only block the receptor's normal signalling. One of the two drugs we have tested also affect some of the other cell pathways and even make the receptor withdraw into the cell and disappear from the surface," explains Professor Mette Rosenkilde, who is the corresponding author of the study. The study results reveal that one of the two drugs makes the bone marrow release more stem cells into the blood.
This knowledge about how drugs affect cell pathways differently is also known as biased signalling. And it is things like these that make one of the drugs more effective in practice than on paper.
According to the researchers, the new knowledge on biased signalling challenges our current view of these drugs.
"The results of our study directly influence our view of drugs used for stem cell transplantation. In the long term, though, it may also affect our view of future drugs, and how new drugs should be designed to have the best possible effect, both in connection with stem cell mobilisation, but also for treating HIV infections, where this particular receptor also plays a main role," says Mette Rosenkilde.
INFORMATION:
ELSE PRESS RELEASES FROM THIS DATE:
2021-05-28
COLUMBUS, Ohio - If you've watched a slasher movie, you've probably been exposed to the final girl trope - a closing scene of a white, suburban teenage girl who triumphed over a threatening monster and lived to tell the tale.
But her story doesn't stop there - in some ways, a whole new life, overshadowed by trauma, has only just begun, Ohio State University graduate student Morgan Podraza posits in an article published in the journal Horror Studies.
Consider actor Jamie Lee Curtis' depiction of Laurie Strode in the Halloween film released in 2018, 40 years after her friends were murdered by Michael Myers on Halloween night. ...
2021-05-28
East Hanover, NJ. May 28, 2021. An international team of multiple sclerosis (MS) experts has identified four under-researched areas that are critical to advancing symptom management for progressive MS, recommending interdisciplinary collaboration among scientists, clinicians, industry leaders, and those with progressive MS. Their call to action was published in Multiple Sclerosis Journal on March 15, 2021, in the article "Prioritizing progressive MS rehabilitation research: A call from the International Progressive MS Alliance" (doi: 10.1177/1352458521999970). The Alliance was represented ...
2021-05-28
The findings have been published in "Science", the renowned journal.
The world market for electroceramics is in the region of 25 billion euros a year. These very small components are often not even perceived in daily life. A smartphone alone contains 600 capacitors, 3 trillion - that's 3000 billion - of which are manufactured every year. The way many electroceramics function is not based on current flow through the material, but on small charge dislocations, called polarisation, over fractions of an atomic diameter. About a quarter of the electroceramics produced in the world link this polarisation to an extension of the material, ...
2021-05-28
UNIVERSITY PARK, Pa. -- Developing new ultrathin metal electrodes has allowed researchers to create semitransparent perovskite solar cells that are highly efficient and can be coupled with traditional silicon cells to greatly boost the performance of both devices, said an international team of scientists. The research represents a step toward developing completely transparent solar cells.
"Transparent solar cells could someday find a place on windows in homes and office buildings, generating electricity from sunlight that would otherwise be wasted," said Kai Wang, assistant research professor ...
2021-05-28
As the cleanest renewable energy, hydrogen energy has attracted special attention in the research. Yet the commercialization of traditional proton exchange membrane fuel cells (PEMFCs), which consume hydrogen and produce electricity, is seriously restricted due to the chemical reaction of PEMFCs cathode largely relies on expensive platinum-based catalysts.
A solution is to change the acidic electrolyte of PEMFCs to alkaline. Such fuel cells are called anion exchange membrane fuel cells (AEMFCs), and they allow for the use of cheaper metal elements like Co, Ni or Mn to design electrocatalysts.
The research team led by Prof. GAO Minrui from University of Science and Technology ...
2021-05-28
During the era of commercial whaling, fin whales were hunted so intensively that only a small percentage of the population in the Southern Hemisphere survived, and even today, marine biologists know little about the life of the world's second-largest whale. That makes the findings of researchers from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) and the Johann Heinrich von Thünen Institute for Sea Fisheries, which show that a large number of the baleen whales regularly frequent the krill-rich waters surrounding Elephant Island, all the more welcome. Evidence for this is provided by underwater sound ...
2021-05-28
An international archaeological study, led by researchers from the Culture and Socio-Ecological Dynamics (CaSEs) research group at Pompeu Fabra University, has advanced in the understanding and preservation of archaeological sites and in improving their analysis and surveying, thanks to the application of pXRF (portable X-ray fluorescence analysis) to anthropogenic sediments in Africa. It is a rapid, inexpensive, non-invasive procedure, which enables generating an additional archaeological record from the anthropogenic deposit by analysing chemical elements, combined with geostatistics.
It is a rapid, inexpensive, non-invasive procedure, ...
2021-05-28
The work was conducted under the auspices of the Russian Foundation for Basic Research and organizations-participants of the BRICS framework program in science, technology and innovation; the grant title is "Nanosized peptide-based biomaterials for photodynamic diagnostics of tumors".
Project lead, Chief Research Associate of KFU's Bionanotechnology Lab Rawil Fakhrullin commented on the results, "The development of materials for theranostics (simultaneous early diagnosis and therapy of diseases) is one of the most urgent tasks in modern chemistry and biomedicine. A feature of such materials is the combination of at least two functions: sensory and therapeutic. ...
2021-05-28
A research group led by Takashi Saito, of the Ehime University Graduate School of Medicine, developed a 2-photon excitation light-sheet fluorescence microscope which (1) lowers phototoxicity, (2) extends the field of view, and (3) heightens spatial resolution. This microscope, when used for the observation of medaka fish, made it possible to observe the whole body of the embryo (an extended field of view) at a cellular level resolution (high spatial resolution) without affecting the growth of the fish (low phototoxicity) over a three-day span of embryonic development. ...
2021-05-28
The research team of the Department of Organic Chemistry of Samara Polytech under the leadership of Doctor of Chemical Sciences, Head of the Department Yuri Klimochkin and Doctor of Chemical Sciences, Professor Alexander Reznikov in cooperation with the crystallographic research group of Lomonosov Moscow State University (supervisor - candidate of chemical sciences, senior researcher Victor Rybakov) completed a study to obtain non-racemic 4,5-dihydrofurans based on Michael addition and study their chemical properties. The announcement of a scientific article with the results of the latest research is posted on the cover of the authoritative journal Tetrahedron.
"Studying the method of obtaining ...
LAST 30 PRESS RELEASES:
[Press-News.org] Stem cell drugs surprise researchers: Could lead to better drugs in the future
A study conducted in mice by researchers at the University of Copenhagen details their function providing new knowledge that may improve stem cell transplantation and lead to better drug design in the future