Metamaterial improves sensitivity of infrared absorption spectroscopy 100 times
KIMM and UNIST develop metamaterial that improves infrared spectroscopic detection signal 100 times; low-cost technique revolutionizes detection of harmful substances and biomolecules
2021-06-01
(Press-News.org) A local research team, comprised of members of the Korea Institute of Machinery and Materials(KIMM) under the Ministry of Science and ICT and UNIST, developed a metamaterial absorber that significantly enhances the detection of harmful substances or biomolecules, and published their results in Small Methods.
The joint research team led by Principal Researcher Dr. Joo-Yun Jung of the Nano-Convergence Mechanical Systems Research Division at KIMM and Professor Jongwon Lee of UNIST developed a metamaterial that enhances infrared absorption spectroscopy through 100-fold amplification of detection signals. The proposed metamaterial is a special functional material with vertical nanogaps of a smaller size than infrared wavelength.
Infrared spectroscopy is a technique that identifies components based on patterns of reflected light by measuring the properties of molecules to absorb infrared of their intrinsic frequencies. If only small traces of the target substance are detected, the results will not be as significant due to the small difference in light intensity.
The proposed metamaterial gathers and releases light energy at once, thereby inducing a larger intensity of light that can be absorbed by molecules. The amplified signals allow more distinct results to be obtained even when working with small traces of substances.
Cross-shaped nanoantennas were formed in a metal-insulator-metal configuration. The middle insulating layer had a thickness of 10 nm; vertical gaps were employed to maximize light absorption by molecules.
Inyong Hwang, a researcher of the Department of Electrical Engineering at UNIST, said, "The proposed metamaterial achieved a record-high difference of 36% in our demonstration on a monolayer with a thickness of 2.8 nm. This is the best record achieved to date among monolayer detection experiments."
The proposed metamaterial can be easily mass-produced and offers low-cost manufacturing. While high-resolution beam lithography was required to form microstructures on metamaterial surfaces, the team's SEIRA platform relies on more affordable nanoimprint lithography and dry-etching processes.
Dr. Joo-Yun Jung, principal researcher of KIMM, said, "Using the nanoimprint process, we can obtain metamaterials in the metal-insulator-metal configuration, and process them into desired patterns. On top of that, the dry etching process allows mass production of microstructured metamaterials."
Professor Jongwon Lee of UNIST said, "Our study is the first to induce near-field enhancement and resolve near-field exposure using vertical gaps. The technique is expected to have vast applications, especially for infrared sensors used in the detection of biomolecules, harmful substances, and gases."
INFORMATION:
The Korea Institute of Machinery and Materials(KIMM) is a non-profit government-funded research institute under the Ministry of Science and ICT. Since its foundation in 1976, KIMM is contributing to economic growth of the nation by performing R&D on key technologies in machinery and materials, conducting reliability test evaluation, and commercializing the developed products and technologies.
The research results were published in Small Methods, an international journal published by Wiley, on May 13, with the title "Ultrasensitive Molecule Detection Based on Infrared Metamaterial Absorber with Vertical Nanogap". The study was conducted with the support of the Global Frontier Center for Advanced Meta-Materials under the Ministry of Science and ICT, and the Nano-Material Technology Development Program and Civilian-Military Technology Development Program of the National Research Foundation of Korea.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-06-01
Recently, the research team led by Prof. KONG Lingtao from Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS) prepared a highly active single iron atom catalyst (Fe-ISAs@CN) which can activate H2O2 to generate free radicals, achieving rapid removal of sulfadiazine pollutants in aqueous. The relevant results were published in Journal of Colloid and Interface Science.
Sulfadiazine (SDZ), a kind of synthetic sulfadiazine antibiotic, is widely used in clinical and animal husbandry industries. However, due to its large-scale use and unqualified discharge of wastewater, more and more antibiotic residues ...
2021-06-01
Recently, the research team led by Prof. KONG Lingtao from Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS) prepared a highly active single iron atom catalyst (Fe-ISAs@CN) which can activate H2O2 to generate free radicals, achieving rapid removal of sulfadiazine pollutants in aqueous. The relevant results were published in Journal of Colloid and Interface Science.
Sulfadiazine (SDZ), a kind of synthetic sulfadiazine antibiotic, is widely used in clinical and animal husbandry industries. However, due to its large-scale use and unqualified discharge of wastewater, more and more antibiotic residues are detected in the ...
2021-06-01
Graphene-based materials can be obtained using various reducing agents, many of which are dangerous and toxic chemicals, and the obtained graphene-based materials are prone to aggregation, limiting their practical applications.
Recently, a research group of Prof. HUANG Qing from the Institute of Intelligent Machines, Hefei Institutes of Physical Science (HFIPS), prepared graphene-based nanozymes through a simple and green preparation method, and verified that it can be used to detect L-cysteine in serum.
The study, published in Analytical and Bioanalytical Chemistry, was supported by the National Natural Science Foundation ...
2021-06-01
According to the theory of planet formation, rocky bodies such as the Earth were formed by repeating collisions from dusty materials. In this process, a number of Mercury- or Mars-sized planetary embryos, were formed, and eventually these bodies merged together and formed terrestrial planets in our solar system. During the formation of the planetary embryos, the interior of these bodies was likely to be molten due to the heat by radiative-decay elements and a collisional energy of the planetary embryos. At this stage, iron and silicate separate, and form the metallic core and ...
2021-06-01
It might seem like a given that mothers take extra risks to protect their children, but have you ever wondered why? A new study led by Kumi Kuroda at the RIKEN Center for Brain Science (CBS) in Japan shows that in mice, this and other nurturing behaviors are driven in part by neurons in a small part of the forebrain that contain a protein called the calcitonin receptor. The study was published in Cell Reports.
Many simple behaviors, such as eating and drinking, are driven by different parts of the brain's hypothalamus. The new study focused on identifying the part that drives a much more complicated behavior: caring for infants. As Kuroda explains, "we were able to narrow down the brain cells necessary ...
2021-06-01
Most prescriptions for the drug buprenorphine, used to treat opioid use disorder, are written by a small number of the health care providers, according to a new RAND Corporation study.
Published in the June 1 edition of the Journal of the American Medical Association, the study found that half of all patient-months of buprenorphine treatment during 2016 and 2017 were prescribed by just 4.9% of the physicians and other providers who prescribed the drug during the period.
"These findings have important implications for efforts to increase buprenorphine access," said Dr. Bradley D. Stein, the study's lead author and a senior physician researcher at RAND, a nonprofit research organization. "Our study suggests that targeted efforts to encourage more current prescribers to become high-volume ...
2021-06-01
In a recent study, Australian scientists used an original approach to resolve the 3D structure of flaviviruses with an unprecedented level of detail, identifying small molecules known as 'pocket factors' as new therapeutic targets.
Flaviviruses infect humans by mosquito or tick bite, with symptoms ranging from fever and myalgia to life-threatening neurological and congenital conditions. Flaviviruses such as dengue, yellow fever and Zika threaten almost a third of the world's population, and new flaviviruses emerge regularly from animal reservoirs with the potential to cause epidemics. ...
2021-06-01
A research team led by scientists at Université de Montréal has developed a unique observational tool for assessing children up to 5 years of age who have had a concussion. The work is explained in a study published in the Journal of Head Trauma Rehabilitation.
Pediatric traumatic brain injury (TBI) is particularly prevalent in toddlers; they're more likely to be injured because they have a lower sense of danger and are still developing physically. But parents and clinicians have trouble detecting symptoms of trauma, given the toddler's limited verbal skills.
"A young child will not tell you that they have a headache or feel dizzy," said Dominique Dupont, an UdeM postdoctoral student in neuropsychology and first author of the study.
"But assessing post-concussion symptoms ...
2021-06-01
PHILADELPHIA--An odor-based test that sniffs out vapors emanating from blood samples was able to distinguish between benign and pancreatic and ovarian cancer cells with up to 95 percent accuracy, according to a new study from researchers at the University of Pennsylvania and Penn's Perelman School of Medicine.
The findings suggest that the Penn-developed tool -- which uses artificial intelligence and machine learning to decipher the mixture of volatile organic compounds (VOCs) emitting off cells in blood plasma samples -- could serve as a non-invasive approach ...
2021-06-01
Our lives today are governed by electronics in all shapes and forms. Electronics, in turn, are governed by their batteries. However, the traditional lithium-ion batteries (LIBs), that are widely used in electronic devices, are falling out of favor because researchers are beginning to view lithium metal batteries (LMBs) as a superior alternative due to their remarkably high energy density that exceeds LIBs by an order of magnitude! The key difference lies in the choice of anode material: LIBs use graphite, whereas LMBs use lithium metal.
Such a choice, however, comes with its own challenges. Among the most prominent ones is the formation ...
LAST 30 PRESS RELEASES:
[Press-News.org] Metamaterial improves sensitivity of infrared absorption spectroscopy 100 times
KIMM and UNIST develop metamaterial that improves infrared spectroscopic detection signal 100 times; low-cost technique revolutionizes detection of harmful substances and biomolecules