A new direction of topological research is ready for take off
2021-06-01
(Press-News.org) In a joint effort, ct.qmat scientists from Dresden, Rostock, and Würzburg have accomplished non-Hermitian topological states of matter in topolectric circuits. The latter acronym refers to topological and electrical, giving a name to the realization of synthetic topological matter in electric circuit networks. The main motif of topological matter is its role in hosting particularly stable and robust features immune to local perturbations, which might be a pivotal ingredient for future quantum technologies. The current ct.qmat results promise a knowledge transfer from electric circuits to alternative optical platforms, and have just been published in Physical Review Letters.
Topological defect tuning in non-Hermitian systems
At the center of the currently reported work is the circuit realization of parity-time (PT) symmetry, as it has been previously intensely studied in optics. The ct.qmat team have employed the PT symmetry to still make the open circuit system with gain and loss share a large amount of features with an isolated system. This is a core insight in order to design topological defect states in a compensatingly dissipative and accumulative setting. It is accomplished through non-Hermitian PT topolectric circuits.
Potential paradigm change in synthetic topological matter
"This research project has enabled us to create a joint team effort between all locations of the Cluster of Excellence ct.qmat towards topological matter. Topolectric circuits create an experimental and theoretical inspiration for new avenues of topological matter, and might have a particular bearing on future applications in photonics. The flexibility, cost-efficiency, and versatility of topolectric circuits is unprecedented, and might constitute a paradigm change in the field of synthetic topological matter", summarizes the Würzburg scientist and study director Ronny Thomale.
Next stop: applications
Having built a one-dimensional version of a PT symmetry topolectric circuit with a linear dimension of 30 unit cells, the next step towards technology envisioned by the research team is to take on PT symmetric circuits in two dimensions and as such about 1000 coupled circuit unit cells. Eventually, the insight gained through topolectric circuits may establish one milestone that could make light-controlled computers possible. They would be much faster and more energy-efficient than today's electron-controlled models.
People involved
Besides the cluster members based at Julius-Maximilians-Universität Würzburg (JMU) and the Leibnitz Institute for Solid State and Materials Research Dresden (IFW), the scientists around Professor Alexander Szameit from the University of Rostock are also involved in the publication. The Cluster of Excellence ct.qmat cooperates with Szameit's group in the field of topological photonics.
INFORMATION:
Cluster of Excellence ct.qmat
The Cluster of Excellence ct.qmat - Complexity and Topology in Quantum Matter is a joint research collaboration by the Julius-Maximilians- Universität Würzburg and the Technische Universität (TU) Dresden since 2019. More than 250 scientists from 33 countries and four continents perform research on topological quantum materials that reveal surprising phenomena under extreme conditions such as ultra-low temperature, high pressure, or strong magnetic field. Making these special properties usable under everyday conditions will be the basis for revolutionary quantum chips and new types of technical applications. The Cluster of Excellence is funded within Excellence Strategy of the federal and state governments.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-06-01
Hydrogen peroxide (H2O2) is used to disinfect minor cuts at home and for oxidative reactions in industrial manufacturing. Now, the pandemic has further fueled demand for this chemical and its antiseptic properties. While affordable at the grocery store, H2O2 is actually difficult and expensive to manufacture at scale.
A team led by the University of Illinois Urbana-Champaign has demonstrated a more efficient and environmentally friendly method to produce H2O2, according to a recent study published in the Journal of the American Chemical Society.
"While the two ingredients--hydrogen and oxygen--are either inexpensive or freely available from the atmosphere, hydrogen peroxide is highly reactive and unstable, which makes it very hard to produce," said first author Tomas ...
2021-06-01
TAMPA, Fla. - Moffitt Cancer Center, a national leader in cancer care and research and the only National Cancer Institute-designated Comprehensive Cancer Center based in Florida, is presenting new data from dozens of clinical research studies at this year's American Society of Clinical Oncology (ASCO) Annual Meeting, the world's largest clinical cancer research meeting. Moffitt investigators will lead 25 abstract presentations, five education sessions, two cancer-based panels and two clinical science symposia. The virtual meeting is June 4-8.
Highlights include:
Oral Presentations:
Dr. Bijal Shah will ...
2021-06-01
Physicists at the University of Bath in the UK, in collaboration with researchers from the USA, have uncovered a new mechanism for enabling magnetism and superconductivity to co-exist in the same material. Until now, scientists could only guess how this unusual coexistence might be possible. The discovery could lead to applications in green energy technologies and in the development of superconducting devices, such as next-generation computer hardware.
As a rule, superconductivity (the ability of a material to pass an electrical current with perfect efficiency) and magnetism (seen at work in fridge magnets) make poor bedfellows because the alignment of the tiny electronic magnetic particles in ferromagnets ...
2021-06-01
A catastrophic drop in atmospheric ozone levels around the tropics is likely to have contributed to a bottleneck in the human population around 60 to 100,000 years ago, an international research team has suggested. The ozone loss, triggered by the eruption of the Toba supervolcano located in present-day Indonesia, might solve an evolutionary puzzle that scientists have been debating for decades.
"Toba has long been posited as a cause of the bottleneck, but initial investigations into the climate variables of temperature and precipitation provided no concrete ...
2021-06-01
In interstellar dust clouds, turbulence must first dissipate before a star can form through gravity. A German-French research team has now discovered that the kinetic energy of the turbulence comes to rest in a space that is very small on cosmic scales, ranging from one to several light-years in extent. The group also arrived at new results in the mathematical method: Previously, the turbulent structure of the interstellar medium was described as self-similar - or fractal. The researchers found that it is not enough to describe the structure mathematically as a single fractal, a self-similar structure as known from the Mandelbrot set. Instead, they added several different fractals, so-called multifractals. The new methods can thus be used to resolve ...
2021-06-01
Researchers from North Carolina State University have developed a new state-of-the-art method for controlling how artificial intelligence (AI) systems create images. The work has applications for fields from autonomous robotics to AI training.
At issue is a type of AI task called conditional image generation, in which AI systems create images that meet a specific set of conditions. For example, a system could be trained to create original images of cats or dogs, depending on which animal the user requested. More recent techniques have built on this to incorporate conditions regarding an image layout. This allows users to specify which types of objects they want to appear in particular places on the screen. ...
2021-06-01
Amsterdam, June 1, 2021 - The Treatabolome project is a research initiative to develop a freely available, interoperable online platform dedicated to disseminating rare disease and gene-specific treatment information to healthcare professionals regardless of their level of specialized expertise. Developed under the Solve-RD European Research Project, it is intended to reduce treatment delays for patients with rare diseases by directly linking diagnosis and treatment information. This initiative is highly relevant to neuromuscular disorders as they are rare diseases by definition. In this special issue of the Journal of Neuromuscular Diseases, experts contribute Treatabolome-feeding systematic literature reviews on rare neurological ...
2021-06-01
Neutrons - Space ice, un-Earthly cold
Researchers from NASA's Jet Propulsion Laboratory and Oak Ridge National Laboratory successfully created amorphous ice, similar to ice in interstellar space and on icy worlds in our solar system. They documented that its disordered atomic behavior is unlike any ice on Earth.
The findings could help interpret data from future NASA missions such as Europa Clipper, which will assess the habitability of Jupiter's moon, Europa.
Using the Spallation Neutron Source's SNAP instrument, the scientists replicated the cold vacuum of space and added a few molecules ...
2021-06-01
Single atomic defect is the smallest structural unit of solid material. The construction of devices based on single defect can reach the limit of miniaturization of semiconductor devices. In the past decades, the creation and manipulation of single defects in semiconductors opened a new research field, and could be used to physically realize "qubits" of solid-state quantum computation through spin or electron charge. Most interest have focused on the studies of spin quantum computing. However, the spin manipulation need an optical and magnetic field. On the contrary, multiple ...
2021-06-01
Leipzig. The smoke from the extreme forest fires on the US West Coast in September 2020 travelled over many thousands of kilometres to Central Europe, where it continued to affect the atmosphere for days afterwards. A comparison of ground and satellite measurements now shows: The forest fire aerosol disturbed the free troposphere over Leipzig in Germany as never before. An evaluation by an international research team led by the Leibniz Institute for Tropospheric Research (TROPOS) revealed an extraordinary optical thickness on 11 September 2020, which attenuated ...
LAST 30 PRESS RELEASES:
[Press-News.org] A new direction of topological research is ready for take off