Printing a better microgrid
New research shows particle-free silver microgrid outperforms other flexible high-performance transparent electrodes
2021-06-02
(Press-News.org) The future of electronic displays will be thin, flexible and durable. One barrier to this, however, is that one of the most widely used transparent conductors for electronic displays--indium tin oxide (ITO)--doesn't perform as well on larger areas and can crack and break down with wear. Indium is also a rare earth mineral, which is relatively scarce, and the process to create ITO requires high energy consumption and expensive equipment.
One emerging alternative is metal "microgrid" conductors. These microgrids can be customized to their application by varying the microgrid width, pitch and thickness, and they can be made with a variety of metals.
New research from the University of Pittsburgh Swanson School of Engineering investigates the use of microgrids printed with particle-free silver inks, demonstrating its advantages when compared with other particle-based inks. The paper is published in ACS Applied Electronic Materials and is featured on a supplemental cover of the journal.
"Among the alternatives to ITO being explored, metal microgrids are an attractive option because of their low sheet resistance and high transparency, which is well suited to many optoelectronic applications," explained Paul Leu, Associate Professor of Industrial Engineering, whose Laboratory for Advanced Materials at Pittsburgh (LAMP) conducted the research. "However, because of the fabrication processes available, it's difficult to perfect. Our research focuses on addressing key issues in fabricating silver microgrids using particle-free silver ink, and we found it has some key advantages over particle-based inks."
The project is a continuation of the LAMP lab's collaboration with Electroninks, a technology company in Austin, Texas. The company produces a circuit drawing kit called Circuit Scribe, which uses conductive silver ink to allow users to create working lights with circuits drawn on paper. Circuit Scribe sparked Leu's initial interest in working with the company to develop their particle-free metal ink as a way to address some of the limitations of ITO.
The researchers found that the particle-free fabricated microgrids were more reliable than those printed with particle-based inks, showing better transparent electrode performance, lower roughness, and better mechanical durability, which is necessary for flexible displays. To test its durability, the researchers performed several tests, including adhesion, bending and folding tests.
"These microgrids outperformed both particle-based ink-formed microgrids and ITO microgrids in all of our tests," said lead author and PhD student, Ziyu Zhou. "Our research paves the way for better performing, less expensive and more durable displays that don't rely on the mining of rare earth minerals."
In addition to evaluating the microgrids as a replacement for ITO in OLEDs, the team is evaluating them for transparent antennas and electromagnetic interference (EMI) shielding.
INFORMATION:
The research paper, "Polymer-Embedded Silver Microgrids by Particle-Free Reactive Inks for Flexible High Performance Transparent Conducting Electrodes," (DOI: 10.1021/acsaelm.1c00107) was coauthored by Ziyu Zhou, S Brett Walker, Melbs LeMieux and Paul W Leu.
The supplemental cover, designed by Randal McKenzie, is featured in the May 25th issue of the journal.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-06-02
Researchers have demonstrated "giant flexoelectricity" in soft elastomers that could improve robot movement range and make self-powered pacemakers a real possibility. In a paper published this month in the Proceedings of the National Academy of Sciences, scientists from the University of Houston and Air Force Research Laboratory explain how to engineer ostensibly ordinary substances like silicone rubber into an electric powerhouse.
What do the following have in common: a self-powered implanted medical device, a soft human-like robot and how we hear sound? The answer as to why these two disparate technologies and biological phenomena ...
2021-06-02
SMU Office of Research & Tech Transfer - Whether they are in the technology or oil sector, selling shoes or healthcare products, for many companies, green is the new black. While maximising profit might have been the sole priority for most businesses a decade ago, these days it is common for mission-oriented companies to pursue the 'triple bottom line' of people, planet and profit, particularly through corporate social responsibility (CSR) efforts.
While such efforts are commendable, some investors remain primarily concerned about whether firms can do well by doing good; in other words, whether CSR actually can increase a company's value. For instance, CSR activities could enhance brand image and improve customer loyalty, or even make it easier to attract and retain talent, leading to ...
2021-06-02
ABERDEEN PROVING GROUND, Md. - A new formula from Army scientists is leading to new insights on how to build an energy-efficient legged teammate for dismounted warfighters.
In a recent peer-reviewed PLOS One paper, the U.S. Army Combat Capabilities Development Command, known as DEVCOM, Army Research Laboratory's Drs. Alexander Kott, Sean Gart and Jason Pusey offer new insights on building autonomous military robotic legged platforms to operate as efficiently as any other ground mobile systems.
Its use could lead to potentially important changes to Army vehicle development. Scientists said they may not know exactly why legged, wheeled and tracked ...
2021-06-02
BROOKLYN, New York, Wednesday, June 2, 2021 - Perovskite solar cells have progressed in recent years with rapid increases in power conversion efficiency (from 3% in 2006 to 25.5% today), making them more competitive with silicon-based photovoltaic cells. However, a number of challenges remain before they can become a competitive commercial technology.
Now a team at the END ...
2021-06-02
The organization of the human genome relies on physics of different states of matter - such as liquid and solid - a team of scientists has discovered. The findings, which reveal how the physical nature of the genome changes as cells transform to serve specific functions, point to new ways to potentially better understand disease and to create improved therapies for cancer and genetic disorders.
The genome is the library of genetic information essential for life. Each cell contains the entire library, yet it uses only part of this information. Special types of cells, such ...
2021-06-02
SMU Office of Research & Tech Transfer - Short selling often gets a bad rap because it is a type of trade that bets against the success of a firm. In essence, short selling allows investors to borrow stock from a broker to sell into the market with the hope of buying the stock back at a cheaper price, thus, profiting on the difference between the sell and buy prices. Because of this practice, short selling is sometimes seen as a controversial tactic.
Furthermore, speculative short selling attacks are concerning as it can put downward pressure on ...
2021-06-02
The quantum Hall effect traditionally only plays a role in two-dimensional electron systems. Recently, however, a three-dimensional version of the quantum Hall effect was described in the Dirac semimetal ZrTe5. It has been suggested that this version results from a magnetic field-induced Fermi surface instability that transforms the original three-dimensional electron system into a stack of two-dimensional electron systems. Now scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, at the Technical University of Dresden, at the Brookhaven National Laboratory in New York, at the Helmholtz Center Dresden-Rossendorf, the Max Planck Institute ...
2021-06-02
Boulder, Colo., USA: GSA's dynamic online journal, Geosphere, posts articles online regularly. Locations and topics studied this month include the Moine thrust zone in northwestern Scotland; the Eastern California shear zone; implementation of "OpenTopography"; the finite evolution of "mole tracks"; the southern central Andes; the work of International Ocean Discovery Program (IODP) Expedition 351; and the Fairweather fault, Alaska, USA. You can find these articles at https://geosphere.geoscienceworld.org/content/early/recent.
Detrital-zircon analyses, provenance, and ...
2021-06-02
RIVERSIDE, Calif. -- As its name suggests, dark matter -- material which makes up about 85% of the mass in the universe -- emits no light, eluding easy detection. Its properties, too, remain fairly obscure.
Now, a theoretical particle physicist at the University of California, Riverside, and colleagues have published a research paper in the Journal of High Energy Physics that shows how theories positing the existence a new type of force could help explain dark matter's properties.
"We live in an ocean of dark matter, yet we know very little about what it could be," said Flip Tanedo, an assistant professor of physics and astronomy and the paper's senior author. "It is one of the most vexing known unknowns in nature. ...
2021-06-02
It's long been known that people living with HIV experience a loss of white matter in their brains. As opposed to "gray matter," which is composed of the cell bodies of neurons, white matter is made up of a fatty substance called myelin that coats neurons, offering protection and helping them transmit signals quickly and efficiently. A reduction in white matter is associated with motor and cognitive impairment.
Earlier work by a team from the University of Pennsylvania and Children's Hospital of Philadelphia (CHOP) found that antiretroviral therapy (ART)--the lifesaving suite ...
LAST 30 PRESS RELEASES:
[Press-News.org] Printing a better microgrid
New research shows particle-free silver microgrid outperforms other flexible high-performance transparent electrodes