PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

How COVID-19 wreaks havoc on human lungs

New structure shows how virus envelope protein hijacks cell-junction protein and promotes viral spread; findings could speed the design of drugs to block severe effects of COVID-19

How COVID-19 wreaks havoc on human lungs
2021-06-08
(Press-News.org) UPTON, NY--Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have published the first detailed atomic-level model of the SARS-CoV-2 "envelope" protein bound to a human protein essential for maintaining the lining of the lungs. The model showing how the two proteins interact, just published in the journal Nature Communications, helps explain how the virus could cause extensive lung damage and escape the lungs to infect other organs in especially vulnerable COVID-19 patients. The findings may speed the search for drugs to block the most severe effects of the disease.

"By obtaining atomic-level details of the protein interactions we can explain why the damage occurs, and search for inhibitors that can specifically block these interactions," said study lead author Qun Liu, a structural biologist at Brookhaven Lab. "If we can find inhibitors, then the virus won't cause nearly as much damage. That may give people with compromised health a much better chance for their immune systems to fight the virus successfully."

Scientists discovered the details and developed the molecular model using one of the new cryo-electron microscopes at Brookhaven Lab's Laboratory for BioMolecular Structure (LBMS), a new research facility built with funding from New York State adjacent to Brookhaven's National Synchrotron Light Source II (NSLS-II).

"LBMS opened last summer ahead of schedule because of its importance in the battle against COVID-19," said Sean McSweeney, director of LBMS and a coauthor on the paper. "LBMS and NSLS-II offer complementary protein-imaging techniques and both are playing important roles in deciphering the details of proteins involved in COVID-19. This is the first paper published based on results from the new facility."

Liguo Wang, scientific operations director of LBMS and another coauthor on the paper, explained that "cryo-electron microscopy (cryo-EM) is particularly useful for studying membrane proteins and dynamic protein complexes, which can be difficult to crystallize for protein crystallography, another common technique for studying protein structures. With this technique we created a 3-D map from which we could see how the individual protein components fit together."

"Without cryo-EM, we couldn't have gotten a structure to capture the dynamic interactions between these proteins," Liu said.

Triggering lung disruption

The SARS-CoV-2 envelope protein (E), which is found on the virus's outer membrane alongside the now-infamous coronavirus spike protein, helps to assemble new virus particles inside infected cells. Studies published early in the COVID-19 pandemic showed that it also plays a crucial role in hijacking human proteins to facilitate virus release and transmission. Scientists hypothesize that it does this by binding to human cell-junction proteins, pulling them away from their usual job of keeping the junctions between lung cells tightly sealed.

"That interaction can be good for the virus, and very bad for humans--especially elderly COVID-19 patients and those with pre-existing medical conditions," Liu said.

When lung cell junctions are disrupted, immune cells come in to try to fix the damage, releasing small proteins called cytokines. This immune response can make matters worse by triggering massive inflammation, causing a so-called "cytokine storm" and subsequent acute respiratory distress syndrome.

Also, because the damage weakens the cell-cell connections, it might make it easier for the viruses to escape from the lungs and travel through the bloodstream to infect other organs, including the liver, kidneys, and blood vessels.

"In this scenario, most damage would occur in patients with more viruses and more E proteins being produced," Liu said. And this could become a vicious cycle: More viruses making more E proteins and more cell-junction proteins being pulled out, causing more damage, more transmission, and more viruses again. Plus, any existing damage, such as lung-cell scarring, would likely make it harder for COVID patients to recover from the damage.

"That's why we wanted to study this interaction--to understand the atomic-level details of how E interacts with one of these human proteins to learn how to interrupt the interactions and reduce or block these severe effects," Liu said.

From specks to blobs to map to model

The scientists obtained atomic-level details of the interaction between E and a human lung-cell-junction protein called PALS1 by mixing the two proteins together, freezing the sample rapidly, and then studying the frozen sample with the cryo-EM. The electron microscopes use high-energy electrons to interact with the sample in much the same way that regular light microscopes use beams of light. But electrons allow scientists to see things at a much smaller scale due to their extremely short wavelength (100,000 times shorter than that of visible light).

The first images didn't look like much more than specks. But image-processing techniques allowed the team to select specks that were actual complexes of the two proteins.

"We used two-dimensional averaging and started to see some structural features that are shared among these particles. Our images showed the complex from different orientations but at fairly low resolution," Liu said. "Then we use computational tools and computation infrastructure at Brookhaven's Computational Science Initiative to perform three-dimensional reconstructions. These give us a 3-D model--an experimental map of the structure."

With an overall resolution of 3.65 Angstroms (the size of just a few atoms), the map had enough information about the unique characteristics of the individual amino acids that make up the two proteins for the scientists to fit the known structures of those amino acids into the map.

"We can see how the chain of amino acids that makes up the PALS1 protein folds to form three structural components, or domains, and how the much smaller chain of amino acids that makes up the E protein fits in a hydrophobic pocket between two of those domains," Liu said.

The model provides both the structural details and an understanding of the intermolecular forces that allow E proteins deep within an infected cell to wrench PALS1 from its place at the cell's outer boundary.

"Now we can explain how the interactions pull PALS1 from the human lung-cell junction and contribute to the damage," Liu said.

Implications for drugs and evolution

"This structure provides the foundation for our computational science colleagues to run docking studies and molecular dynamics simulations to search for drugs or drug-like molecules that might block the interaction," said John Shanklin, chair of Brookhaven Lab's Biology Department and a coauthor on the paper. "And if they identify promising leads, we have the analytical capabilities to rapidly screen through such candidate drugs to identify ones that might be key to preventing severe consequences of COVID-19."

Understanding the dynamics of this protein interaction will also help scientists track how viruses like SARS-CoV-2 evolve.

"When the virus protein pulls PALS1 out of the cell junction, it could help the virus spread more easily. That would provide a selective advantage for the virus. Any traits that increase the survival, spread, or release of the virus are likely to be retained," Liu said.

The longer the virus continues to circulate, the more chances there are for new evolutionary advantages to arise.

"This is one more reason it is so essential for us to identify and implement promising therapeutics," Liu said. "In addition to preventing the most severe infections, drugs that effectively treat COVID-19 will keep us ahead of these mutations."

INFORMATION:

This research was funded by Brookhaven National Laboratory's COVID-19 Laboratory Directed Research and Development (LDRD) fund. LBMS is supported by the DOE Office of Science (BER), NSLS-II is a DOE Office of Science user facility, supported by the Office of Science (BES).

Brookhaven National Laboratory is supported by the U.S. Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://www.energy.gov/science/ .

Follow @BrookhavenLab on Twitter or find us on Facebook.


[Attachments] See images for this press release:
How COVID-19 wreaks havoc on human lungs

ELSE PRESS RELEASES FROM THIS DATE:

Experiments show natural selection opposes sexual selection

Experiments show natural selection opposes sexual selection
2021-06-08
Natural selection can reverse evolution that occurs through sexual selection and this can lead to better females, new research shows. The study - led by the University of Exeter and Okayama University - examined broad-horned flour beetles, whose males have exaggerated mandibles, while females do not. Male beetles with the largest mandibles win more fights and mate with more females - an example of "sexual selection", where certain characteristics (like a male peacock's tail) improve mating success. However, having bigger mandibles requires a masculinised body (large head and neck), ...

Scientists can predict which women will have serious pregnancy complications

2021-06-08
Women who will develop potentially life-threatening disorders during pregnancy can be identified early when hormone levels in the placenta are tested, a new study has shown. Pregnancy disorders affect around one in ten pregnant women. Nearly all of the organ systems of the mother's body need to alter their function during pregnancy so that the baby can grow. If the mother's body cannot properly adapt to the growing baby this leads to major and common issues including fetal growth restriction, fetal over-growth, gestational diabetes, and preeclampsia - a life-threatening high blood pressure ...

Projected acidification of the Great Barrier Reef could be offset by ten years

2021-06-08
New research has shown that by injecting an alkalinizing agent into the ocean along the length of the Great Barrier Reef, it would be possible, at the present rate of anthropogenic carbon emissions, to offset ten years' worth of ocean acidification. The research, by CSIRO Oceans and Atmosphere, Hobart, used a high-resolution model developed for the Great Barrier Reef region to study the impact of artificial ocean alkalinization on the acidity of the waters in the Great Barrier Reef. The study is based on the use of existing shipping infrastructure to inject a source of alkalinity into the ocean, which could also be considered as an acceleration of the chemical weathering of minerals through natural ...

HKUST-Beijing Tiantan Hospital researchers discover a new cause for the cerebral cavernous malformation

HKUST-Beijing Tiantan Hospital researchers discover a new cause for the cerebral cavernous malformation
2021-06-08
Researchers from the Hong Kong University of Science and Technology (HKUST) and Beijing Tiantan Hospital have recently uncovered a new gene mutation responsible for the non-familial patients of cerebral cavernous malformation (CCM) - a brain vascular disorder which inflicted about 10~30 million people in the world. While the mutation of three genes: namely CCM1, CCM2, and CCM3, were known to be a cause of CCM - they mostly targeted patients who has family history in this disorder - which only account for about 20 per cent of the total inflicted ...

Consumers spent less on candy and desserts when shopping online

2021-06-08
Philadelphia, June 8, 2021 - When shopping online, participants surveyed spent more money, purchased more items, and spent less on candy and desserts than when they shopped in-store, according to a END ...

Orphans and exiles: Research shows the impact of family separation

2021-06-08
BINGHAMTON, N.Y. -- New research from Binghamton University, State University of New York shows the human trauma and family separation that resulted from the Trump Administration's zero tolerance policy on undocumented immigration. The news reports surrounding the Trump Administration's "zero tolerance" policy on undocumented immigration were stark: children separated from their parents, uncertain whether they would ever see them again. All told, the official zero tolerance policy lasted only a few months, from April to June 2018. But family separations occurred before and after those dates: at least 5,512 children were separated from their families since July 2017, and 1,142 families were separated ...

Early endeavors on the path to reliable quantum machine learning

2021-06-08
Anyone who collects mushrooms knows that it is better to keep the poisonous and the non-poisonous ones apart. Not to mention what would happen if someone ate the poisonous ones. In such "classification problems", which require us to distinguish certain objects from one another and to assign the objects we are looking for to certain classes by means of characteristics, computers can already provide useful support to humans. Intelligent machine learning methods can recognise patterns or objects and automatically pick them out of data sets. For example, they could pick out those pictures from a photo database that show non-toxic ...

Super productive 3D bioprinter could help speed up drug development

Super productive 3D bioprinter could help speed up drug development
2021-06-08
A 3D printer that rapidly produces large batches of custom biological tissues could help make drug development faster and less costly. Nanoengineers at the University of California San Diego developed the high-throughput bioprinting technology, which 3D prints with record speed--it can produce a 96-well array of living human tissue samples within 30 minutes. Having the ability to rapidly produce such samples could accelerate high-throughput preclinical drug screening and disease modeling, the researchers said. The process for a pharmaceutical company to develop a new drug can take up to 15 years and cost up to $2.6 billion. It generally begins with screening tens of thousands of drug candidates in ...

In youth, COVID-19 causes more complications than flu; fatality is rate

2021-06-08
NEW YORK, NY--A new global study of 30-day outcomes in children and adolescents with COVID-19 found that while death was uncommon, the illness produced more symptoms and complications than seasonal influenza. The study, "30-day outcomes of Children and Adolescents with COVID-19: An International Experience," published online in the journal Pediatrics, also found significant variation in treatment of children and adolescents hospitalized with COVID-19. Early in the pandemic, opinions around the impact of COVID-19 on children and adolescents ranged from it being no more than the common flu to fear of its potential impact on lesser-developed immune systems. This OHDSI global network study compared the real-world observational data of more ...

Climate change a bigger threat to landscape biodiversity than emerald ash borer

2021-06-07
The emerald ash borer, an invasive beetle native to Southeast Asia, threatens the entire ash tree population in North America and has already changed forested landscapes and caused tens of billions of dollars in lost revenue to the ash sawtimber industry since it arrived in the United States in the 1990s. Despite the devastating impact the beetle has had on forests in the eastern and midwestern parts of the U.S., climate change will have a much larger and widespread impact on these landscapes through the end of the century, according to researchers. "We really wanted to focus on isolating the impact of the emerald ash borer ...

LAST 30 PRESS RELEASES:

New, embodied AI reveals how robots and toddlers learn to understand

Game, set, match: Exploring the experiences of women coaches in tennis

Significant rise in mental health admissions for young people in last decade

Prehab shows promise in improving health, reducing complications after surgery

Exercise and improved diet before surgery linked to fewer complications and enhanced recovery

SGLT-2 drug plus moderate calorie restriction achieves higher diabetes remission

Could the Summerville ghost lantern be an earthquake light?

Will the U.S. have enough pain specialists?

Stronger stress response in monkeys helps them survive

Using infrared heat transfer to modify chemical reactions

Being a ladies' man comes at a price for alpha male baboons

Study shows anti-clotting drug reduced bleeding events in patients with atrial fibrillation

UMaine-led team develops more holistic way to monitor lobster industry

Antiviral protein causes genetic changes implicated in Huntington’s disease progression

SwRI-led PUNCH spacecraft make final pit stop before launch

Claims for the world’s deepest earthquake challenged by new analysis

MSU study finds children of color experience more variability in sleep times

Pregnancy may increase risk of mental illness in people with MS

Multiple sclerosis linked to higher risk of mental illness during and after pregnancy

Beyond ChatGPT: WVU researchers to study use and ethics of artificial intelligence across disciplines

Ultrasensitive test detects, serially monitors intact virus levels in patients with COVID-19

mRNA-activated blood clots could cushion the blow of osteoarthritis

Three rockets will ignite Poker Flat’s 2025 launch season

Jared M. Kutzin, DNP, MS, MPH, RN, named President of the Society for Simulation in Healthcare

PET probe images inflammation with high sensitivity and selectivity

Epilepsy patient samples offer unprecedented insights on brain ‘brakes’ linked to disorders

Your stroke risk might be higher if your parents divorced during your childhood

Life satisfaction measurement tool provides robust information across nations, genders, ages, languages

Adult children of divorced parents at higher risk of stroke

Anti-climate action groups tend to arise in countries with stronger climate change efforts

[Press-News.org] How COVID-19 wreaks havoc on human lungs
New structure shows how virus envelope protein hijacks cell-junction protein and promotes viral spread; findings could speed the design of drugs to block severe effects of COVID-19