Identification of RNA editing profiles and their clinical relevance in lung adenocarcinoma
2021-06-08
(Press-News.org) The incidence rate of lung adenocarcinoma (LUAD) is increasing gradually and the mortality is still high. Recent advances in the genomic profile of LUAD have identified a number of driver alterations in specific genes, enabling molecular classification and targeted therapy accordingly. However, only a fraction of LUAD patients with those driver mutations could benefit from targeted therapy, and the remaining large numbers of patients were unclassified. RNA editing events are those nucleotide changes in the RNA. Currently, the role of RNA editing events in tumorigenesis and their potential clinical utility have been reported in a series of studies. However, the profiles of the RNA editing events and their clinical relevance in LUAD remained largely unknown.
"We describe a comprehensive landscape of RNA editing events in LUAD by integrating transcriptomic and genomic data from our NJLCC project and TCGA project. We find that the global RNA editing level is significantly increased in tumor tissues and is highly heterogeneous across LUAD patients. The high RNA editing level in tumors can be attributed to both RNA and DNA alterations." said Dr. Cheng Wang, the first author for this work. The results indicated that the pattern of RNA editing events could represent the global characteristics of lung adenocarcinoma. "We then define a new molecular subtype, EC3, based on most variable RNA editing sites. The patients of this subtype show the poorest prognosis. Importantly, the subtype is independent of classic molecular subtypes based on gene expression or DNA methylation. We further propose a simplified prediction model including eight RNA editing sites to accurately distinguish EC3 subtype. " said Dr. Wang. Molecular typing based on a few RNA editing sites may have enormous potential in the clinics. "By applying the simplified model, we find that the EC3 subtype is associated with the sensitivity of specific chemotherapy drugs." said Dr. Wang.
"Our study comprehensively describes the general pattern of RNA editing in LUAD. More importantly, we propose a novel molecular subtyping strategy of LUAD based on RNA editing that could predict the prognosis of patients. A simplified model with a few editing sites makes the strategy potentially available in the clinics." said Professor Hongbing Shen, the corresponding author.
INFORMATION:
This work was supported by National Natural Science of China (81922061, 82072579, 81521004, 81973123), National Key Research and Development Project (2017YFC0907905), and Research Unit Of Prospective Cohort of Cardiovascular Diseases and Cancer, Chinese Academy of Medical Sciences (2019RU038).
See the article:
Wang, C., Huang, M., Chen, C., Li, Y., Qin, N., Ma, Z., Fan, J., Gong, L., Zeng, H., Yang, L., et al. (2021). Identification of A-to-I RNA editing profiles and their clinical relevance in lung adenocarcinoma. Sci China Life Sci 64, https://doi.org/10.1007/s11427-020-1928-0
https://www.sciengine.com/publisher/scp/journal/SCLS/doi/10.1007/s11427-020-1928-0?slug=fulltext
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-06-08
Glass is one of the most common subjects we see every day, but the detailed structure of this non-metallic and non-liquid material has always been a major mystery in science. A research team co-led by scientists at City University of Hong Kong (CityU) has successfully discovered that the amorphous and crystalline metallic glass have the same structural building blocks. And it is the connectivity between these blocks that distinguishes the crystalline and amorphous states of the material. The findings shed light on the understanding of glass structure.
Glass is a non-crystalline amorphous solid which has widespread practical and technological use in daily life. Besides the soda-lime glass used in windows, there are many other ...
2021-06-08
Epidemiological and toxicological studies indicate that the adverse outcomes of PM2.5 exposure associated closely with the chemical composition in PM2.5. Metals in PM2.5 are highly concerned for their induced disruption of iron homeostasis in the lung and following oxidative stress, which is one of the key mechanisms underlying the cardiovascular autonomic dysfunction of PM2.5 exposure. However, there is no clear evidence on whether COPD patients are more susceptible to cardiovascular autonomic dysfunction associated with exposure to metals in ambient PM2.5 than individuals without COPD. Based on a panel study, the researchers directly compared metal-associated cardiovascular autonomic dysfunction between COPD patients and healthy controls.
"We observed higher levels of heart ...
2021-06-08
Supermassive black holes (SMBH) occupy the center of galaxies, with masses ranging from one million to 10 billion solar masses. Some SMBHs are in a bright phase called active galactic nuclei (AGN).
AGNs will eventually burn out since there is a maximum mass limit for SMBHs; scientists have long since pondered when that will be.
Tohoku University's Kohei Ichikawa and his research group may have discovered an AGN towards the end of its life span by accident after catching an AGN signal from the Arp 187 galaxy.
Through observing the radio images in the galaxy using two astronomy observatories - the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Array (VLA) - ...
2021-06-08
Globally, the Earth system has thousands of terragrams (Tg) (1 Tg = 10 12 g) of mineral nanoparticles moving around the planet each year. These mineral nanoparticles are ubiquitously distributed throughout the atmosphere, oceans, waters, soils, in and/or on most living organisms, and even within proteins such as ferritin. In natural environments, mineral nanozymes can be produced by two pathways: "top down" and "bottom up" processes. Specifically, the weathering or human-promoted breakdown of bulk materials can result in nanomaterials directly (a top-down process), or nanomaterials ...
2021-06-08
A team of researchers from Nanyang Technological University, Singapore (NTU Singapore), Ngee Ann Polytechnic, Singapore (NP), and the National Heart Centre Singapore (NHCS) have invented a tool that could speed up the diagnosis of cardiovascular diseases.
Powered by artificial intelligence (AI), their innovation uses electrocardiograms (ECGs) to diagnose coronary artery disease, myocardial infarction and congestive heart failure to an accuracy of more than 98.5 per cent.
The joint development of the diagnostic tool is timely, as the number of deaths caused by cardiovascular disease in Singapore has increased over the past three years. According to the Singapore Heart Foundation, 29.3 per cent of all deaths in Singapore in 2019, or almost 1 out of 3 deaths in Singapore, was due to heart ...
2021-06-08
Osteoporosis is a condition that does not exhibit symptoms until there is a bone fracture, so it is said that there is a high percentage of people who remain unaware of their condition. When people are unaware their bones have weakened, the condition is left untreated, and the recent rise of the elderly population has caused an increase in bone fractures. This has a large societal impact, such as overwhelming medical costs and long-term care. Simple screenings at resident health exams are one way for an increase in osteoporosis detecting without having to go to the hospital. When suspected osteoporosis and osteopenia is properly detected and patients are encouraged to get further evaluation at the hospital, ...
2021-06-08
Scientists have observed for the first time what it looks like in the key memory region of the brain when a mistake is made during a memory trial. The findings have implications for Alzheimer's disease research and advancements in memory storage and enhancement, with a discovery that also provides a view into differences between the physiological events in the brain during a correct memory versus a faulty one.
The study was published today in the journal Nature Communications.
In both correct and incorrect recall of a spatial memory, researchers could observe patterns of cell activation in the brain that were similar, though the pace of activation differed.
"We could see the memories activating," said Laura Colgin, an associate professor of neuroscience at The University ...
2021-06-08
SAN RAMON, Calif., June 8, 2021--CooperVision today announced its scientific research program for the 2021 British Contact Lens Association Virtual Clinical Conference and Exhibition, which begins Sunday, June 13. For the first time, the biennial event will be streamed live over the course of 30 hours, welcoming members of the global eye care community to experience and discuss the latest category advancements.
More than 20 CooperVision-authored and sponsored investigations were accepted by the conference committee. The papers and posters span a range of topics that underpin the contact lens industry's evolution, including new data and insights on the complex lifestyle factors involved with addressing presbyopia, misperceptions surrounding soft toric lens fitting, ...
2021-06-08
An unprecedented analysis of almost 10,000 Harmful Algal Bloom (HAB) events worldwide over the past 33 years was launched today by UNESCO's Intergovernmental Oceanographic Commission.
The first-ever global statistical analysis examined ~9,500 HABs events over 33 years and found that the harm caused by HABs rises in step with growth of the aquaculture industry and marine exploitation and calls for more research on linkages.
Conducted over seven years by 109 scientists in 35 countries, the study found that reported HAB events have increased in some regions and decreased or held steady in others. ...
2021-06-08
UPTON, NY--Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have published the first detailed atomic-level model of the SARS-CoV-2 "envelope" protein bound to a human protein essential for maintaining the lining of the lungs. The model showing how the two proteins interact, just published in the journal Nature Communications, helps explain how the virus could cause extensive lung damage and escape the lungs to infect other organs in especially vulnerable COVID-19 patients. The findings may speed the search for drugs to block the most severe effects of the disease.
"By obtaining atomic-level details of the protein interactions we can explain why the damage occurs, and search for inhibitors ...
LAST 30 PRESS RELEASES:
[Press-News.org] Identification of RNA editing profiles and their clinical relevance in lung adenocarcinoma