PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Researchers uncover unique properties of a promising new superconductor

Material could be used in future quantum computing applications

Researchers uncover unique properties of a promising new superconductor
2021-06-16
(Press-News.org) An international team of physicists led by the University of Minnesota has discovered that a unique superconducting metal is more resilient when used as a very thin layer. The research is the first step toward a larger goal of understanding unconventional superconducting states in materials, which could possibly be used in quantum computing in the future.

The collaboration includes four faculty members in the University of Minnesota's School of Physics and Astronomy--Associate Professor Vlad Pribiag, Professor Rafael Fernandes, and Assistant Professors Fiona Burnell and Ke Wang--along with physicists at Cornell University and several other institutions. The study is published in Nature Physics, a monthly, peer-reviewed scientific journal published by the Nature Research.

Niobium diselenide (NbSe2) is a superconducting metal, meaning that it can conduct electricity, or transport electrons from one atom to another, with no resistance. It is not uncommon for materials to behave differently when they are at a very small size, but NbSe2 has potentially beneficial properties. The researchers found that the material in 2D form (a very thin substrate only a few atomic layers thick) is a more resilient superconductor because it has a two-fold symmetry, which is very different from thicker samples of the same material.

Motivated by Fernandes and Burnell's theoretical prediction of exotic superconductivity in this 2D material, Pribiag and Wang started to investigate atomically-thin 2D superconducting devices.

"We expected it to have a six-fold rotational pattern, like a snowflake." Wang said. "Despite the six-fold structure, it only showed two-fold behavior in the experiment."

"This was one of the first times [this phenomenon] was seen in a real material," Pribiag said.

The researchers attributed the newly-discovered two-fold rotational symmetry of the superconducting state in NbSe2 to the mixing between two closely competing types of superconductivity, namely the conventional s-wave type--typical of bulk NbSe2--and an unconventional d- or p-type mechanism that emerges in few-layer NbSe2. The two types of superconductivity have very similar energies in this system. Because of this, they interact and compete with each other.

Pribiag and Wang said they later became aware that physicists at Cornell University were reviewing the same physics using a different experimental technique, namely quantum tunneling measurements. They decided to combine their results with the Cornell research and publish a comprehensive study.

Burnell, Pribiag, and Wang plan to build on these initial results to further investigate the properties of atomically thin NbSe2 in combination with other exotic 2D materials, which could ultimately lead to the use of unconventional superconducting states, such as topological superconductivity, to build quantum computers.

"What we want is a completely flat interface on the atomic scale," Pribiag said. "We believe this system will be able to give us a better platform to study materials to use them for quantum computing applications."

In addition to Pribiag, Fernandes, Burnell, Wang, the collaboration included University of Minnesota physics graduate students Alex Hamill, Brett Heischmidt, Daniel Shaffer, Kan-Ting Tsai, and Xi Zhang; Cornell University faculty members Jie Shan and Kin Fai Mak and graduate student Egon Sohn; Helmuth Berger and László Forró, researchers at Ecole Polytechnique Fédérale de Lausanne in Switzerland; Alexey Suslov, a researcher at the National High Magnetic Field Laboratory in Tallahassee, Fla.; and Xiaoxiang Xi, a professor at Nanjing University in China.

The University of Minnesota research was supported primarily by the National Science Foundation (NSF) through the University of Minnesota Materials Research Science and Engineering Center (MRSEC). The research at Cornell was supported by the Office of Naval Research (ONR) and NSF. The work in Switzerland was supported by the Swiss National Science Foundation.

INFORMATION:


[Attachments] See images for this press release:
Researchers uncover unique properties of a promising new superconductor

ELSE PRESS RELEASES FROM THIS DATE:

Concordia researchers break down the COVID-19 diagnostic arsenal

Concordia researchers break down the COVID-19 diagnostic arsenal
2021-06-16
Clinical research on COVID-19 has boomed in the 18 months since the disease first appeared. Countless papers have looked at the topic from almost every possible angle, including methods of detection. For a new paper published in the journal END ...

How a supermassive black hole originates

How a supermassive black hole originates
2021-06-16
RIVERSIDE, Calif. -- Supermassive black holes, or SMBHs, are black holes with masses that are several million to billion times the mass of our sun. The Milky Way hosts an SMBH with mass a few million times the solar mass. Surprisingly, astrophysical observations show that SMBHs already existed when the universe was very young. For example, a billion solar mass black holes are found when the universe was just 6% of its current age, 13.7 billion years. How do these SMBHs in the early universe originate? A team led by a theoretical physicist at the University of California, Riverside, has come up with an explanation: a massive seed black hole that the collapse of a dark matter halo could produce. Dark matter halo is the halo of invisible matter ...

Pioneering chemistry approach could lead to more robust soft electronics

Pioneering chemistry approach could lead to more robust soft electronics
2021-06-16
RESEARCH TRIANGLE PARK, N.C. -- A new approach to studying conjugated polymers made it possible for an Army-funded research team to measure, for the first time, the individual molecules' mechanical and kinetic properties during polymerization reaction. The insights gained could lead to more flexible and robust soft electronic materials, such as health monitors and soft robotics. Conjugated polymers are essentially clusters of molecules strung along a backbone that can conduct electrons and absorb light. This makes them a perfect fit for creating soft optoelectronics, such as wearable electronic devices; however, as flexible as they are, these polymers are difficult to study in bulk because they aggregate ...

P-glycoprotein removes Alzheimer's-associated toxin from the brain

P-glycoprotein removes Alzheimers-associated toxin from the brain
2021-06-16
DALLAS (SMU) -- A team of SMU biological scientists has confirmed that P-glycoprotein (P-gp) has the ability to remove a toxin from the brain that is associated with Alzheimer's disease. The finding could lead to new treatments for the disease that affects nearly 6 million Americans. It was that hope that motivated lead researchers James W. McCormick and Lauren Ammerman to pursue the research as SMU graduate students after they both lost a grandmother to the disease while at SMU. In the Alzheimer's brain, abnormal levels of amyloid-β proteins clump together to form plaques that collect between neurons and can disrupt cell function. ...

Having a strong life purpose eases loneliness of COVID-19 isolation

2021-06-16
Why can some people weather the stress of social isolation better than others, and what implications does this have for their health? New research from the Communication Neuroscience Lab at the Annenberg School for Communication at the University of Pennsylvania found that people who felt a strong sense of purpose in life were less lonely during the COVID-19 pandemic. Did they achieve less loneliness by flouting public health guidance? No. Although lonelier people were less likely to want to follow public health guidance, people with a stronger sense of purpose also expressed more willingness to engage in social distancing, hand washing, and other ...

Study reveals recipe for even more powerful COVID-19 vaccines

Study reveals recipe for even more powerful COVID-19 vaccines
2021-06-16
A new study looking at the way human cells activate the immune system in response to SARS-CoV-2 infection could open the door to even more effective and powerful vaccines against the coronavirus and its rapidly emerging variants keeping the global pandemic smoldering. Researchers from Boston University's National Emerging Infectious Diseases Laboratories (NEIDL) and the Broad Institute of MIT and Harvard say it's the first real look at exactly what types of "red flags" the human body uses to enlist the help of T cells--killers sent out by the immune system to destroy infected cells. Until now, COVID vaccines have been focused on activating a different type of immune cell, B cells, which are responsible for creating antibodies. Developing vaccines to activate ...

Over-the-counter fungicide can disrupt hormones

2021-06-16
Steroid (sex) hormones play a central role in sexual development: They help determine how boys become boys and girls become girls. If these hormones are disrupted during fetal life, it can lead to a string of reproductive disorders at birth and later in life, including malformed genitals and decreased fertility. Many environmental chemicals are known to disrupt the hormone system and are often referred to as endocrine disrupting chemicals. Azole fungicides constitute one group that can act as endocrine disruptors. Azoles are used to combat yeast infestations in seed and food crops, but are also used in medications for humans. Most azoles used in medicines are tightly regulated and their use is well controlled. However, some are sold over-the-counter, for ...

Stem cells may hold a key to developing new vaccines against COVID-19

Stem cells may hold a key to developing new vaccines against COVID-19
2021-06-16
Philadelphia, June 16, 2021 - The SARS-CoV-2 virus that causes COVID-19 may have the ability to reactivate dormant tuberculosis (TB). In a novel study scientists END ...

Coronary angiography video interpolation methods to reduce x-ray exposure frequency

2021-06-16
In a new publication from Cardiovascular Innovations and Applications; DOI https://doi.org/10.15212/CVIA.2021.0011, Xiao-lei Yin, Dong-xue Liang, Lu Wang, Jing Qiu, Zhi-yun Yang, Jian-zeng Dong and Zhao-yuan Ma from Tsinghua University, Beijing, China; Capital Medical University, Beijing, China and The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China analyse coronary angiography video interpolation methods to reduce x-ray exposure frequency based on deep learning. Cardiac coronary angiography is a major technique that assists physicians during interventional heart surgery. Under X-ray irradiation, the physician ...

ST-segment depression in leads I and aVL: Artifactual or pathophysiological findings?

2021-06-16
In a new publication from Cardiovascular Innovations and Applications; DOI https://doi.org/10.15212/CVIA.2021.0013, Sharen Lee, Gary Tse, Xin Wang, Adrian Baranchuk and Tong Liu from Laboratory of Cardiovascular Physiology, Hong Kong, China, Second Hospital of Tianjin Medical University, Tianjin, China and Queen's University, Kingston, Ontario, Canada consider ST-segment depression in leads I and aVL. The 12-lead electrocardiogram (ECG) is a routinely performed test but is susceptible to misinterpretation even by experienced physicians. The authors report a case of a 72-year-old lady with no prior cardiac history presenting with atypical chest pain. Her initial electrocardiogram shows an initial ST depression followed by positive deflections leads I and aVL. ...

LAST 30 PRESS RELEASES:

“Genetic time machine” reveals complex chimpanzee cultures

Earning money while making the power grid more stable – energy consumers have a key role in supporting grid flexibility

No ‘one size fits all’ treatment for Type 1 Diabetes, study finds

New insights into low-temperature densification of ceria-based barrier layers for solid oxide cells

AI Safety Institute launched as Korea’s AI Research Hub

Air pollution linked to longer duration of long-COVID symptoms

Soccer heading damages brain regions affected in CTE

Autism and neural dynamic range: insights into slower, more detailed processing

AI can predict study results better than human experts

Brain stimulation effectiveness tied to learning ability, not age

Making a difference: Efficient water harvesting from air possible

World’s most common heart valve disease linked to insulin resistance in large national study

Study unravels another piece of the puzzle in how cancer cells may be targeted by the immune system

Long-sought structure of powerful anticancer natural product solved by integrated approach

World’s oldest lizard wins fossil fight

Simple secret to living a longer life

Same plant, different tactic: Habitat determines response to climate

Drinking plenty of water may actually be good for you

Men at high risk of cardiovascular disease face brain health decline 10 years earlier than women

Irregular sleep-wake cycle linked to heightened risk of major cardiovascular events

Depression can cause period pain, new study suggests

Wistar Institute scientists identify important factor in neural development

New imaging platform developed by Rice researchers revolutionizes 3D visualization of cellular structures

To catch financial rats, a better mousetrap

Mapping the world's climate danger zones

Emory heart team implants new blood-pumping device for first time in U.S.

Congenital heart defects caused by problems with placenta

Schlechter named Cancer Moonshot Scholar

Two-way water transfers can ensure reliability, save money for urban and agricultural users during drought in Western U.S., new study shows

New issue of advances in dental research explores the role of women in dental, clinical, and translational research

[Press-News.org] Researchers uncover unique properties of a promising new superconductor
Material could be used in future quantum computing applications