PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Start-stop system of hunting immune cells

Max Planck researchers reveal how immune cells coordinate their swarming behavior to eliminate pathogens effectively together

2021-06-18
(Press-News.org) The body is well protected against invading pathogens by barriers such as the skin. But if you injure yourself and break your skin, pathogens can easily enter your body through the wound and cause severe infections. If this occurs, the innate immune system takes over the first rapid defense with an effective arsenal of cellular weapons infiltrating the wounded tissue in large numbers. As one of the first cell types on the spot, neutrophil granulocytes are recruited within few hours from the bloodstream to the infection site to eliminate potential microbial invaders.

Swarming against infections

"Neutrophils are very efficient in hunting and killing bacteria," says Tim Lämmermann. The group leader at the MPI of Immunobiology and Epigenetics in Freiburg studies this important cell type. Neutrophils are highly abundant cells that make up about 50-70% of white blood cells in the human body. It is estimated that 100 billion neutrophils are produced from stem cells in the bone marrow in an adult every day. "These cells patrol almost all corners of our body, and they are very efficient in sensing anything potentially harmful in our body. Once individual neutrophils detect damaged cells or invading microbes in the tissue, they start secreting attractive signals that act through cell-surface receptors on neighboring neutrophils to recruit more and more cells." By using this intercellular communication, neutrophils can act together as a cell collective and coordinate effectively their clearance for pathogens as a swarm.

A fine line between host protection and tissue destruction

However, this form of beneficial inflammation can also overshoot and lead to massive tissue damage. If the intensity or the duration of the response becomes dysregulated, the same mechanisms that serve to eliminate invading pathogens can also cause collateral damage to healthy tissues. For example, the substances that neutrophils release to kill invading pathogens also erode the meshwork of proteins and sugars, which provides structural support to tissues. "In this study, we started with the question what stops the swarming response to avoid uncontrolled neutrophil accumulation and prevent excessive inflammation, which can contribute to degenerative diseases such as cancer, diabetes, and autoimmune diseases," says Tim Lämmermann. In former studies, he and his team already discovered the molecular mechanisms initiating the collective-like swarming behavior. However, the processes that bring this response to an end have remained unknown.

Neutrophil swarming is still a relatively novel topic in the inflammation and infection research fields, and the underlying mechanisms are just beginning to be investigated. The newest study by the lab of Tim Lämmermann now reveals how neutrophils self-limit their swarming activity in bacteria-infected tissues and thus balance search versus destroy phases for efficient pathogen elimination.

By using specialized microscopy for the real-time visualization of immune cell dynamics in living mouse tissues, the researchers demonstrate that swarming neutrophils become insensitive to their own secreted signals that initiated the swarm in the first place. "We identified a molecular break in neutrophils that stops their movement, once they sense high concentrations of accumulating swarm attractants in large neutrophil clusters" says Tim Lämmermann. "This was surprising as the prevailing view suggested that external signals released from the tissue environment are critical for stopping neutrophil activity in the resolution phase of an inflammation," comments Wolfgang Kastenmüller, collaborating scientist of the Max Planck Research Group Systems Immunology at the University of Würzburg.

An internal start-stop system for optimal bacterial clearance

In light of the discovered start-stop system in neutrophils, the researchers re-evaluated current views on how neutrophils navigate in tissues to eliminate bacteria efficiently. In experiments with neutrophils lacking the stop mechanism, the team observed immune cells excessively swarming and scanning large areas of bacteria-infected tissue, which contrasted the behavior of cells with functioning start-stop system. However, this amplified swarming and scanning did not make these cells better pathogen-killers. "Strikingly, we made the opposite finding. It is not beneficial when neutrophils move around too fast and run around like crazy. Instead, it appears more advantageous for them to stop and enjoy together a nice meal of bacteria - this is more efficient to contain bacterial growth in tissues," explains Tim Lämmermann.

With these results, the team paves the way for a better understanding of neutrophil biology, which is essential for immune host defense against bacteria and could inform therapeutic approaches in the future. Moreover, the swarming behavior and underlying mechanisms could also inform other categories of collective behavior and self-organization in cells and insects.

INFORMATION:



ELSE PRESS RELEASES FROM THIS DATE:

Blocking IL-11 signalling can help liver regenerate after injury from paracetamol toxicity

Blocking IL-11 signalling can help liver regenerate after injury from paracetamol toxicity
2021-06-18
Singapore, 18 Jun 2021 - Scientists at Duke-NUS Medical School and National Heart Centre Singapore (NHCS), in collaboration with colleagues in Singapore and the UK, have shown that the human form of the signalling protein interleukin 11 (IL-11) has a damaging effect on human liver cells--overturning a prior hypothesis that it could help livers damaged by paracetamol poisoning. The finding, published last week in Science Translational Medicine, suggests that blocking IL-11 signalling could have a restorative effect. Paracetamol, also called acetaminophen, is a widely available over-the-counter painkiller, and an overdose can lead to serious liver damage and even death. It is the most common pharmaceutical ...

Cognitive care using medicinal plant peptides

Cognitive care using medicinal plant peptides
2021-06-18
Most of us have heard of Alzheimer's disease, a neurodegenerative disorder marked by brain cell death and the shrinking of the brain. It is the most common cause of dementia and cognitive impairment, which typically have a devastating effect on a person's quality of life. There is still no cure for Alzheimer's. One way of tackling the progression of Alzheimer's disease (AD) is to prevent the underlying adverse changes in the brain. A team of researchers from the National Centre for Biological Sciences (NCBS) has recently published a study in the Journal of Medicinal Chemistry, dedicated to neuroprotection against these toxic changes. They used tiny free-living soil worms --called Caenorhabditis elegans--and the often-ornamental ...

A key player in cell death moonlights as a mediator of inflammation

A key player in cell death moonlights as a mediator of inflammation
2021-06-18
Kanazawa, Japan - Interluekin-1α (IL-1α) is an important part of the immune response, but until now it has been unclear how this molecule is processed from its precursor, pro-IL-1α, and exits the cell during inflammasome activation. Now, researchers from Japan have found that gasdermin D, a protein that was already known to mediate pyroptosis, a form of regulated cell death, plays a crucial role in the maturation and release of IL-1α. In a study published in March in Cell Reports, researchers from Kanazawa University report that, when the ...

Separating natural and man-made pollutants in the air

Separating natural and man-made pollutants in the air
2021-06-18
COVID-19 has changed the world in unimaginable ways. Some have even been positive, with new vaccines developed in record time. Even the extraordinary lockdowns, which have had severe effects on movement and commerce, have had beneficial effects on the environment and therefore, ironically, on health. Studies from all around the world, including China, Europe and India, have found major drops in the level of air pollution. However, to fully understand the impact of anthropogenic causes, it is important to separate them from natural events in the atmosphere like wind flow. To demonstrate this point, a new study by researchers at the Research Institute for Humanity and Nature, Japan, uses satellite data and mathematical modeling to explain just ...

Researchers review data on reputed toxins thought to cause neurodegeneration

Researchers review data on reputed toxins thought to cause neurodegeneration
2021-06-18
Identifying the causes of human neurodegenerative diseases is a global research priority, warranting frequent reviews of the accumulating knowledge. In doing just that, biologists from the Plant Physiology Laboratory at the University of Guam and neuroscientists from the Experimental Medicine Program at The University of British Columbia have published an update on the reputed environmental toxins that have been suspected of being involved in mammal neurodegeneration. Their summary was published in April in the book Spectrums of Amyotrophic Lateral Sclerosis, which is available online ...

Moderate and vigorous physical activity attenuate arterial stiffening already in children

Moderate and vigorous physical activity attenuate arterial stiffening already in children
2021-06-18
According to a recent Finnish study, higher levels of moderate and vigorous physical activity can curb arterial stiffening already in childhood. However, sedentary time or aerobic fitness were not linked to arterial health. The results, based on the ongoing Physical Activity and Nutrition in Children (PANIC) Study conducted at the University of Eastern Finland, were published in the Journal of Sports Sciences. The study was made in collaboration among researchers from the University of Jyväskylä, University of Eastern Finland, the Norwegian School of Sport sciences, and the University of Cambridge. Arterial stiffening predisposes to heart diseases, ...

Earlier flood forecasting could help avoid disaster in Japan

Earlier flood forecasting could help avoid disaster in Japan
2021-06-18
Tokyo, Japan - In Japan, thousands of homes and businesses and hundreds of lives have been lost to typhoons. But now, researchers have revealed that a new flood forecasting system could provide earlier flood warnings, giving people more time to prepare or evacuate, and potentially saving lives. In a study published this month in Scientific Reports, researchers from The University of Tokyo Institute of Industrial Science have shown that a recently developed flood forecasting system provides much earlier advance warnings of extreme flooding events than current systems. ...

Dragonflies: Species losses and gains in Germany

Dragonflies: Species losses and gains in Germany
2021-06-18
Germany is a hotspot for dragonflies and damselflies (Odonata) species in Europe, owing to the range of habitats and climates that it provides. While many recent and mostly small-scale studies suggest long-term declines of insect populations in different parts of Europe, studies of freshwater insects - including dragonflies and damselflies - suggest that some species have increased in occurrence. Researchers of iDiv, FSU and UFZ have now provided a nationwide analysis of the occurrence and distribution of dragonflies and damselflies in Germany between 1980 and 2016. For this, they analysed over 1 million occurrence records on 77 species from different regional ...

Cells optimised to produce substance that holds potential to improve 'healthy ageing'

Cells optimised to produce substance that holds potential to improve healthy ageing
2021-06-18
The population on Earth is increasingly growing and people are expected to live longer in the future. Thus, better and more reliable therapies to treat human diseases such as Alzheimer's and cardiovascular diseases are crucial. To cope with the challenge of ensuring healthy ageing, a group of international scientists investigated the potential of biosynthesising several polyamines and polyamines analogues with already known functionalities in treating and preventing age-related diseases. One of the most interesting molecules to study was spermidine, which is a natural product already present in people's blood and an inducer of autophagy that is an essential cellular process for clearing damaged proteins, e.g., misfolded proteins ...

Greenhouse gas data deep dive reaches new level of 'reasonable and true'

Greenhouse gas data deep dive reaches new level of reasonable and true
2021-06-18
URBANA, Ill. - For the most accurate accounting of a product's environmental impact, scientists look at the product's entire life cycle, from cradle to grave. It's a grand calculation known as a life cycle assessment (LCA), and greenhouse gas emissions are a key component. For corn ethanol, most greenhouse gas emissions can be mapped to the fuel's production, transportation, and combustion, but a large portion of the greenhouse gas calculation can be traced right back to the farm. Because of privacy concerns, however, scientists can't access individual farm management decisions such as fertilizer type and rate. Nitrogen fertilizer data are an important piece of the calculation because a portion ...

LAST 30 PRESS RELEASES:

Recycling CFRP waste is a challenge, but we've found a way to make it work

Advanced nuclear magnetic resonance technique developed to reveal precise structural and dynamical details in zeolites

Advancing performance assessment of a spectral beam splitting hybrid PV/T system with water-based SiO2 nanofluid

Researchers realize target protein stability analysis by time-resolved ultraviolet photodissociation mass spectrometry

Oxygen vacancies mediated ultrathin Bi4O5Br2 nanosheets as efficient piezocatalyst for synthesis of H2O2 from pure water

Warming and exogenous organic matter input affected temperature sensitivity and microbial carbon use efficiency of agricultural soil respiration on the Qinghai-Tibet Plateau

Eco-friendly glue designed by Cal Poly, Geisys Ventures team earns industry 'Innovation Award'

From dreams to reality: unveiling the ideal in situ construction method for lunar habitats and paving the way to Moon colonization

From theory to practice: Study demonstrates high CO2 storage efficiency in shale reservoirs using fracturing technology

What women want: Female experiences to manage pelvic pain

Study finds ChatGPT shows promise as medication management tool, could help improve geriatric health care

Heart failure, not stroke is the most common complication of atrial fibrillation

Antipsychotics for dementia linked to more harms than previously acknowledged

Health improvements occurred worldwide since 2010 despite COVID-19 pandemic, but progress was uneven

Mind the gender gap – Met police least trusted by women

Surrey engineers help Mauritius spot illegal fishing from space

Opioid dependence remains high but stable in Scotland, new surveillance report finds

Protecting brain cells with cannabinol

Calorie restriction study reveals complexities in how diet impacts aging

Atom-by-atom: Imaging structural transformations in 2D materials

How 3D printers can give robots a soft touch

Rice alumna wins prestigious merit-based fellowship for new Americans

International group runs simulations capable of describing South America's climate with unprecedented accuracy

Researchers find that accelerated aging biology in the placenta contributes to a rare form of pregnancy-related heart failure

Vibrations of granular materials: an everyday scientific mystery

UW–Madison biochemist wins prestigious forestry prize for discoveries that support sustainable energy and product innovations

New SPECT/CT technique shows impressive biomarker identification, offers increased access for prostate cancer patients

Study identifies new metric for diagnosing autism

Researchers create new AI pipeline for identifying molecular interactions

Clearing the air: Wind farms more land efficient than previously thought

[Press-News.org] Start-stop system of hunting immune cells
Max Planck researchers reveal how immune cells coordinate their swarming behavior to eliminate pathogens effectively together