(Press-News.org) CAMBRIDGE, Mass. (December 22, 2010) – Whitehead Institute researchers have linked hyperactivity in the mechanistic target of rapamycin complex 1 (mTORC1) cellular pathway, to reduced ketone production, which is a well-defined physiological trait of aging in mice.
Their results are reported in the December 23 edition of the journal Nature.
"This is the first paper that genetically shows that the mTORC1 pathway in mammals affects an aging phenotype," says Whitehead Institute Member David Sabatini. "It provides us with a molecular framework to study an aging-related process in deeper detail."
When we think of aging, sagging skin, dimmed vision, and fragile bones come to mind. But Sabatini's lab is more interested in the cellular changes that occur as organisms age. One cellular pathway, the mTORC1 pathway, is known to coordinate cell growth with nutrient availability and other growth factors. Previous research has shown that when this pathway is inhibited, a variety of animals, including worms, flies, and mice tend to live longer.
Although an increased lifespan suggests that mTORC1 is involved in aging, it fails to clarify mTORC1's precise role in the process. In fact, lifespan is a poor proxy for studying aging, as it is not always a cause of death.
One well-defined trait of aging is a decrease in ketogenesis, or the ability to produce ketones. During sleep or other times of low carbohydrate intake, the liver converts fatty acids to ketones, which are vital sources of energy during fasting, especially for the heart and brain. As animals age, their ability to produce ketones as a response to fasting declines. The cause of this phenomenon remains unknown.
To determine whether mTORC1 mediates ketogenesis in mice, Shomit Sengupta, a former graduate student in Sabatini's lab and first author on the Nature paper, studied the effects of induced hyperactivity in the mTORC1 pathway in the livers of fasting mice. He found that while most blood and liver metabolite levels did not change significantly, ketone levels fell.
After establishing that activating the mTORC1 pathway decreases ketogenesis, Sengupta tried to find exactly where mTORC1 was acting. Knowing that peroxisome proliferator-activated receptor alpha (PPAR-alpha) is an activator of liver ketogenesis, Sengupta attempted to jumpstart the process by stimulating PPAR-alpha. Interestingly, ketone levels failed to increase—a clear indication that that mTORC1 was thwarting PPAR-alpha.
"That now places mTORC1 as the master regulator of ketogenesis," says Sengupta, who is now a Research Fellow at Harvard Medical School. "It could be one of many inputs for PPAR alpha – that's unclear right now. But mTORC1 is sufficient and necessary to suppress PPAR-alpha and ketogenesis."
Connecting mTORC1 to the aging-related decline in ketogenesis was the next step. If mTORC1 activation is responsible for lower ketone levels caused by aging, turning on mTORC1 in older mice should not affect their already low ketone levels – it would be like trying to turn off a light switch that is already off. So Sengupta compared the ketone production of old and young mice during fasting. While turning on the mTORC1 pathway during fasting reduced ketone production in the young mice, the old mice maintained the same, low ketone levels. And when the mTORC1 pathway was turned off in very young mice that were subsequently aged, these older mice did not experience the decline in ketogenesis found in normal mice. Their ketogenesis levels were similar to younger mice, confirming that continual inhibition of the mTORC1 pathway prevented the aging-induced decline in ketone production.
It might follow that suppressing mTORC1 could slow aging, and indeed, some have suggested that the drug rapamycin, an mTOR inhibitor used to treat cancer and to prevent organ transplant rejection, might have anti-aging properties.
"Rapamycin definitely has lots of anti-aging hype," says Sabatini, who is also a professor of biology at MIT and a Howard Hughes Medical Institute (HHMI) investigator. "Having worked with that molecule a lot, I'm not sure I would take it for long periods of time, just for slowing down aging."
Instead Sabatini is focused on a host of more practical questions, including why ketogenesis is suppressed by aging and how aging serves to activate mTORC1.
"We know enough of what's upstream of mTORC1 that I think now we can test different components and ask which one is sort of acting funny in its aged state," says Sabatini.
INFORMATION:
This research was supported by the American Diabetes Association and Ludwig Cancer Fund, the Canadian Institutes of Health Research, and the National Institutes of Health (NIH).
Written by Nicole Giese
David Sabatini's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute investigator and a professor of biology at Massachusetts Institute of Technology.
Full Citations:
"mTOR Complex 1 controls fasting-induced ketogenesis and its modulation by aging"
Nature, December 23, 2010.
Shomit Sengupta (1,2,3), Timothy R. Peterson (1,2,3), Mathieu Laplante (1,2,3), Stephanie Oh (1,2,3), and David M. Sabatini (1,2,3)
1. Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
2. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3. The David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Mammalian aging process linked to overactive cellular pathway
2010-12-23
ELSE PRESS RELEASES FROM THIS DATE:
Fossil finger bone yields genome of a previously unknown human relative
2010-12-23
SANTA CRUZ, CA--A 30,000-year-old finger bone found in a cave in southern Siberia came from a young girl who was neither an early modern human nor a Neanderthal, but belonged to a previously unknown group of human relatives who may have lived throughout much of Asia during the late Pleistocene epoch. Although the fossil evidence consists of just a bone fragment and one tooth, DNA extracted from the bone has yielded a draft genome sequence, enabling scientists to reach some startling conclusions about this extinct branch of the human family tree, called "Denisovans" after ...
JCI table of contents: Dec. 22, 2010
2010-12-23
EDITOR'S PICK: What sex are you?
Sex in mammals is genetically determined. In humans, females have two X chromosomes, while males have one X and one Y chromosome. However, some individuals are born with male genitalia despite having two X chromosomes, a condition known as XX male sex reversal. A team of researchers, led by Paul Thomas, University of Adelaide, Australia, has now determined that overexpression of the Sox3 gene in mice causes frequent XX male sex reversal. The clinical relevance of this was highlighted by the discovery of genomic rearrangements in the regulatory ...
Mortality rates are an unreliable metric for assessing hospital quality, study finds
2010-12-23
BOSTON (December 22, 2010) -- Is quality in the eye of the beholder?
Researchers at Harvard Medical School and Massachusetts General Hospital have found wide disparities among four common measures of hospital-wide mortality rates, with competing methods yielding both higher- and lower-than-expected rates for the same Massachusetts hospitals during the same year.
The findings, published Dec. 23 in a special article in the New England Journal of Medicine, stoke a simmering debate over the value of hospital-wide mortality rates as a yardstick for health care quality. ...
Genome of extinct Siberian human sheds new light on modern human origins
2010-12-23
BOSTON, Mass. (December 22, 2010) — The sequencing of the nuclear genome from an ancient finger bone found in a Siberian cave shows that the cave dwellers were neither Neandertals nor modern humans.
An international team of researchers led by Svante Pääbo of the Max Planck Institute for Evolutionary Anthropology in Leipzig (Germany) has sequenced the nuclear genome from a finger bone of an extinct hominin that is at least 30,000 years old and was excavated by archaeologists from the Russian Academy of Sciences in Denisova Cave in southern Siberia, Russia, in 2008. A ...
Placebos work -- even without deception
2010-12-23
For most of us, the "placebo effect" is synonymous with the power of positive thinking; it works because you believe you're taking a real drug. But a new study rattles this assumption.
Researchers at Harvard Medical School's Osher Research Center and Beth Israel Deaconess Medical Center (BIDMC) have found that placebos work even when administered without the seemingly requisite deception.
The study published on December 22 in PLoS ONE.
Placebos—or dummy pills—are typically used in clinical trials as controls for potential new medications. Even though they contain ...
Designer probiotics could reduce obesity
2010-12-23
Specially designed probiotics can modulate the physiology of host fat cells say scientists writing in Microbiology. The findings could lead to specialised probiotics that have a role in the prevention or treatment of conditions such as obesity.
Scientists from the Alimentary Pharmabiotic Centre (APC), Cork, University College Cork and Teagasc, in Ireland engineered a strain of Lactobacillus to produce a version of a molecule called conjugated linoleic acid (CLA). When this engineered bacterial strain was fed to mice, the researchers found that the composition of the mice's ...
Scientists reveal how biological activity is regulated in fruit fly and roundworm genomes
2010-12-23
Scientists today published catalogs of the fruit fly and roundworm's functional genomic elements: DNA sequences in the genome that carry the instructions and determine which genes are turned on and off at various times in different cells.
Initially sequenced as part of the Human Genome Project, the genomes of the fruit fly, Drosophila melanogaster, and the roundworm, Caenorhabditis elegans, are powerful models for understanding human biology and disease, as many functional genomic elements have been conserved across the vast evolutionary distances separating each organism. ...
Movement and threat of RNA viruses widespread in pollinator community
2010-12-23
Penn State researchers have found that native pollinators, like wild bees and wasps, are infected by the same viral diseases as honey bees and that these viruses are transmitted via pollen. Their research published on December 22nd in PLoS ONE, an online open-access journal for the communication of all peer-reviewed scientific and medical research.
This multi-institutional study provides new insights into viral infections in native pollinators, suggesting that viral diseases may be key factors impacting pollinator populations.
According to Diana Cox-Foster, co-author ...
Learning to read the genome
2010-12-23
In the past decade researchers have made astonishing progress in the rapid and accurate sequencing of genomes from all realms of life. Yet the listing of chemical base pairs has gotten far ahead of understanding how the information they contain becomes functional. Even the best-understood genomes conceal mysteries.
Genetic information carried by DNA and RNA operates together with the patterns and physical organization of chromosomes to produce a working organism. Major advances in understanding these complex relationships are published this week by the "model organism ...
UT Southwestern researchers identify site in brain where leptin may trigger puberty
2010-12-23
DALLAS – Dec. 22, 2010 – UT Southwestern Medical Center researchers have pinpointed a tiny site in the brain where the hormone leptin may help trigger the onset of puberty.
The findings in mice indicate that a site within the hypothalamus called the ventral premammillary nucleus, or PMV, is the target where the hormone leptin effectively kick starts puberty in females.
Researchers have known that puberty starts when individuals have enough energy stores or fat to meet the demands of reproduction, and that leptin – a hormone produced by fat cells – acts in the brain ...