Opening the gate to the next generation of information processing
2021-07-14
(Press-News.org) Many of us swing through gates every day -- points of entry and exit to a space like a garden, park or subway. Electronics have gates too. These control the flow of information from one place to another by means of an electrical signal. Unlike a garden gate, these gates require control of their opening and closing many times faster than the blink of an eye.
Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory and the University of Chicago's Pritzker School of Molecular Engineering have devised a unique means of achieving effective gate operation with a form of information processing called electromagnonics. Their pivotal discovery allows real-time control of information transfer between microwave photons and magnons. And it could result in a new generation of classical electronic and quantum signal devices that can be used in various applications such as signal switching, low-power computing and quantum networking.
"Signal processing that couples spin waves and microwaves is a high-wire act. The signal must remain coherent despite dissipations and other outside effects threatening to throw the system into incoherence." -- Xufeng Zhang, assistant scientist in the Center for Nanoscale Materials
Microwave photons are elementary particles forming the electromagnetic waves employed in, for example, wireless communications. Magnons are the particle-like representatives of ?"spin waves." That is, wave-like disturbances in an ordered array of microscopically aligned spins that occur in certain magnetic materials.
"Many research groups are combining different types of information carriers for information processing," said Xufeng Zhang, assistant scientist in the Center for Nanoscale Materials, a DOE Office of Science User Facility at Argonne. "Such hybrid systems would enable practical applications that are not possible with information carriers of a single type."
"Signal processing that couples spin waves and microwaves is a high-wire act," added Zhang. "The signal must remain coherent despite energy dissipations and other outside effects threatening to throw the system into incoherence."
Coherent gate operation (control over on, off and duration of the magnon-photon interaction) has been a long sought-after goal in hybrid magnonic systems. In principle, this can be achieved by rapid tuning of energy levels between the photon and magnon. However, such tuning has depended on changing the geometric configuration of the device. That typically requires much longer than the magnon lifetime -- on the order of 100 nanoseconds (one-hundred billionths of a second). This lack of a rapid tuning mechanism for interacting magnons and photons has made it impossible to achieve any real-time gating control.
Using a novel method involving energy-level tuning, the team was able to rapidly switch between magnonic and photonic states over a period shorter than the magnon or photon lifetimes. This period is a mere 10 to 100 nanoseconds.
"We start by tuning the photon and magnon with an electric pulse so that they have the same energy level," said Zhang. "Then, the information exchange starts between them and continues until the electric pulse is turned off, which shifts the energy level of the magnon away from that of the photon."
By this mechanism, Zhang said, the team can control the flow of information so that it is all in the photon or all in the magnon or some place in between. This is made possible by a novel device design that allows nanosecond tuning of a magnetic field which controls the magnon energy level. This tunability allows the desired coherent gate operation.
This research points to a new direction for electromagnonics. Most importantly, the demonstrated mechanism not only works in the classical electronics regime, but can also be readily applied for manipulating magnonic states in the quantum regime. This opens opportunities for electromagnonics-based signal processing in quantum computing, communications and sensing.
INFORMATION:
This research was partially supported by the DOE Office of Basic Energy Sciences. It was reported in Physical Review Letters, in a paper titled "Coherent gate operations in hybrid magnonics." In addition to Zhang, authors include Jing Xu, Changchun Zhong, Xu Han, Dafei Jin and Liang Jiang.
About Argonne's Center for Nanoscale Materials
The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://science.osti.gov/User-Facilities/User-Facilities-at-a-Glance.
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.
The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-07-14
An important new study by researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory has yielded critical fresh insights into the lithium production process and how it relates to long-term environmental sustainability, particularly in the area of transportation with batteries and electric vehicles.
The paper, "Energy, Greenhouse Gas, and Water Life Cycle Analysis of Lithium Carbonate and Lithium Hydroxide Monohydrate from Brine and Ore Resources and Their Use in Lithium Ion Battery Cathodes and Lithium Ion Batteries," in the journal ...
2021-07-14
Prof. PAN Jianwei and Prof. ZHANG Jun from University of Science of Technology of China (USTC) of the Chinese Academy of Sciences, collaborating with Prof. CHU Tao's group from Zhejiang University, realized the fastest and miniaturized real-time quantum random number generator (QRNG) with the record-breaking output rate of 18.8 Gbps by combing a state-of-the-art photonic integrated chip with the optimized real-time post processing. The study was published in Applied Physics Letters on June 29.
Random number exists in many fields such as information security and cryptology industries. Different from other random number generators, QRNG, as the key part in quantum communication system, embraces the characteristics ...
2021-07-14
Prof. DU Jiangfeng, Prof. RONG Xing, and their colleagues from the Key Laboratory of Micromagnetic Resonance, University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS), set the most stringent laboratory constraint on the exotic spin- and velocity-dependent interaction at the micrometer scale. This study was published in Physical Review Letters.
The search for dark matter, dark energy, and extra forces is important for the understanding of the existence of the matter that accounts for about a quarter of the universe, but little progress has been made. It is necessary to theoretically and experimentally find particles outside the Standard Model, a tradition ...
2021-07-14
Shells of tamarind, a tropical fruit consumed worldwide, are discarded during food production. As they are bulky, tamarind shells take up a considerable amount of space in landfills where they are disposed as agricultural waste.
However, a team of international scientists led by Nanyang Technological University, Singapore (NTU Singapore) has found a way to deal with the problem. By processing the tamarind shells which are rich in carbon, the scientists converted the waste material into carbon nanosheets, which are a key component of supercapacitors - energy storage devices that are used in automobiles, buses, electric vehicles, trains, and elevators.
The study reflects ...
2021-07-14
Osaka, Japan - When things get too much, we're often advised to "take a load off," but when it comes to bone maintenance, doing the opposite can be a good thing. Researchers from Japan have discovered some key mechanisms of how physical load stimulates bone growth.
In a study published July 13, 2021 at 11 a.m. ET in Cell Reports, researchers from the National Cerebral and Cardiovascular Center Research Institute have revealed that the expression of the peptide osteocrin (OSTN) is influenced by load - decreasing when load is reduced, and increasing when it is added.
Bones and skeletal muscles are strengthened by the load associated with exercise, preventing bone and muscle atrophy, and maintaining bone and muscle strength is important for maintaining physical activity. ...
2021-07-14
Researchers from Kumamoto University, Japan have found that a component derived from turmeric essential oil, aromatic turmerone (ar-turmerone), and its derivatives act directly on dopaminergic nerves to create a neuroprotective effect on tissue cultures of a Parkinson's disease model. This appears to be due to enhanced cellular antioxidant potency from the activation of Nrf2. The researchers believe that the ar-turmerone derivatives identified in this study can be used as new therapeutic agents for Parkinson's disease.
Parkinson's disease is a neurodegenerative disease caused by the ...
2021-07-14
When it comes to the medicinal and therapeutic properties of Cannabis sativa, an unsolved mystery is whether there exists an "entourage effect," whereby the pain-relieving effects of the plant as a whole are greater than any of its individual parts. New research from the University of Arizona Health Sciences has found evidence that favors the entourage effect theory and positions Cannabis terpenes, the part of the plant that provides flavor and aroma, as a promising new target for pain therapies that would require lower doses and produce fewer side effects.
"A lot of people are taking cannabis and cannabinoids for pain," said lead researcher John Streicher, PhD, a member ...
2021-07-14
An associate professor of marketing at The University of Texas at Arlington says digital avatars can replace a sales force and customer service employees at a fraction of the cost.
In this context, avatars are typically computer-generated representations of people. UTA Associate Professor Fred Miao says they can fill the void in interactive assistance that a majority of shoppers says they want.
"An Accenture survey of online shoppers shows that 62% never completed their purchases because there was no real-time customer service or support. That Accenture survey also shows that 90% of those shoppers wanted some sort of interactive assistance during the shopping process," said Miao, faculty fellow of the John Merrill Endowed Professorship ...
2021-07-14
Sea-level rise threatens to produce more frequent and severe flooding in coastal regions and is expected to cause trillions of dollars in damages globally if no action is taken to mitigate the issue. However, communities trying to fight sea-level rise could inadvertently make flooding worse for their neighbors, according to a new study from researchers at The University of Texas at Arlington and the Stanford Natural Capital Project published in Proceedings of the National Academy of Sciences.
Michelle Hummel, an assistant professor of civil engineering at UTA, was lead author of the report, which shows how seawalls constructed along the San Francisco Bay shoreline ...
2021-07-14
UW researchers reveal new aspects of gum disease and body's protective response
SEATTLE - A team led by University of Washington researchers has, for the first time, identified and classified how different people respond to the accumulation of dental plaque, the sticky biofilm that gathers on teeth. Their work, recently published in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS), sheds important new light on why some people may be more prone to serious conditions that lead to tooth loss and other problems.
Left unchecked, plaque buildup can induce gingivitis, or gum inflammation. Gingivitis, ...
LAST 30 PRESS RELEASES:
[Press-News.org] Opening the gate to the next generation of information processing