Nanostructures enable record high-harmonic generation
2021-07-21
(Press-News.org) ITHACA, N.Y. - Cornell researchers have developed nanostructures that enable record-breaking conversion of laser pulses into high-harmonic generation, paving the way for new scientific tools for high-resolution imaging and studying physical processes that occur at the scale of an attosecond - one quintillionth of a second.
High-harmonic generation has long been used to merge photons from a pulsing laser into one, ultrashort photon with much higher energy, producing extreme ultraviolet light and X-rays used for a variety of scientific purposes. Traditionally, gases have been used as sources of harmonics, but a research team led by Gennady Shvets, professor of applied and engineering physics in the College of Engineering, has shown that engineered nanostructures have a bright future for this application.
The research is detailed in the paper "Generation of Even and Odd High Harmonics in Resonant Metasurfaces Using Single and Multiple Ultra-Intense Laser Pulses," published July 7 in Nature Communications. Maxim Shcherbakov, who conducted the research as a Cornell postdoctoral associate before becoming an assistant professor at the University of California, Irvine, is the lead author.
The nanostructures created by the team make up an ultrathin resonant gallium-phosphide metasurface that overcomes many of the usual problems associated with high-harmonic generation in gases and other solids. The gallium-phosphide material permits harmonics of all orders without reabsorbing them, and the specialized structure can interact with the laser pulse's entire light spectrum.
"Achieving this required engineering of the metasurface's structure using full-wave simulations," Shcherbakov said. "We carefully selected the parameters of the gallium-phosphide particles to fulfill this condition, and then it took a custom nanofabrication flow to bring it to light."
The result is nanostructures capable of generating both even and odd harmonics - a limitation of most other harmonic materials - covering a wide range of photon energies between 1.3 and 3 electron volts. The record-breaking conversion efficiency enables scientists to observe molecular and electronic dynamics within a material with just one laser shot, helping to preserve samples that may otherwise be degraded by multiple high-powered shots.
The study is the first to observe high-harmonic generated radiation from a single laser pulse, which allowed the metasurface to withstand high powers - five to 10 times higher than previously shown in other metasurfaces.
"It opens up new opportunities to study matter at ultrahigh fields, a regime not readily accessible before," Shcherbakov said. "With our method, we envision that people can study materials beyond metasurfaces, including but not limited to crystals, 2D materials, single atoms, artificial atomic lattices and other quantum systems."
Now that the research team has demonstrated the advantages of using nanostructures for high-harmonic generation, it hopes to improve high-harmonic devices and facilities by stacking the nanostructures together to replace a solid-state source, such as crystals.
INFORMATION:
Co-authors include Cornell postdoctoral researchers Zhiyuan Fan and Giovanni Sartorello, and researchers from the Ohio State University and the Institute of Materials Research and Engineering in Singapore.
The research was funded by the Office of Naval Research, the Cornell Center for Materials Research through the National Science Foundation's Materials Research Science and Engineering Centers program, and the Air Force Office of Scientific Research.
ELSE PRESS RELEASES FROM THIS DATE:
2021-07-21
Researchers at Weill Cornell Medicine and NewYork-Presbyterian in New York have discovered that injecting mice with pulmonary endothelial cells--the cells that line the walls of blood vessels in the lung--can reverse the symptoms of emphysema. The study, which will be published July 21 in the Journal of Experimental Medicine (JEM), may lead to new treatments for chronic obstructive pulmonary disease (COPD), an inflammatory lung disease associated with smoking that is thought to be the third leading cause of death worldwide.
Emphysema is one of the characteristic features ...
2021-07-21
Wearable devices can detect people's stress, according to new Washington State University research, opening potential new interventions for people with addictions.
In a paper published today, July 21, in the END ...
2021-07-21
A landmark scientific study involving marine biologists from Greece, Turkey, Cyprus, Libya, Italy, Tunisia, the UK, the US and even Malta, documenting instances where native Mediterranean species have preyed upon two highly invasive marine fish - the Pacific red lionfish and the silver-cheeked toadfish - has just been published. Prof. Alan Deidun, coordinator of the Spot the Alien Fish citizen science campaign and resident academic within the Department of Geosciences of the Faculty of Science, is a co-author of such an extensive study.
The Pacific red lionfish (Pterois miles) and the silver-cheeked toadfish (Lagocephalus sceleratus) are amongst the most invasive of non-indigenous fish species to enter the Mediterranean in recent years, posing both ecological and socio-economic hazards. ...
2021-07-21
SARS-CoV-2 still poses major challenges to mankind. The frequent emergence of mutant forms makes the threat posed by the virus difficult to predict. The SARS-CoV-2 variant B.1.617 circulated in India and gave rise to the Delta variant, B.1.617.2, which is now becoming dominant in many countries. Infection researchers from the German Primate Center (DPZ) - Leibniz Institute for Primate Research in Göttingen have investigated the B.1.617 variant in detail. In cell culture studies, they found that this variant can infect certain lung and intestinal cell lines more efficiently than the original ...
2021-07-21
A high proportion of staff working in intensive care units during the COVID-19 pandemic have experienced mental health conditions, according to a new study.
In a study of 515 healthcare staff working in intensive care units (ICUs) across seven countries, the researchers found that on average 48 percent of participants showed signs of mental health conditions - depression, insomnia and post-traumatic stress disorder (PTSD). Their mental health was assessed using a detailed questionnaire and a clinical scoring system.
The team also found a 40 per cent increase in the conditions for those who spent more than six hours in personal protective equipment (PPE) over ...
2021-07-21
At low temperatures, certain materials lose their electrical resistance and conduct electricity without any loss - this phenomenon of superconductivity has been known since 1911, but it is still not fully understood. And that is a pity, because finding a material that would still have superconducting properties even at high temperatures would probably trigger a technological revolution.
A discovery made at TU Wien (Vienna) could be an important step in this direction: A team of solid-state physicists studied an unusual material - a so-called "strange metal" made of ytterbium, rhodium and silicon. Strange metals show an unusual relationship between electrical resistance and temperature. ...
2021-07-21
A protein involved in making cells move offers a clue to how certain types of cancer metastasize and develop into secondary tumours, according to new research from the University of Warwick.
Scientists from Warwick Medical School have demonstrated for the first time that levels of this protein can increase and decrease the movement of a cell, including cancer cells - suggesting that they could play a role in the spread of tumours.
The study is published today (21 July) in the Journal of Cell Biology and was funded by the Medical Research Council, part of UK Research and Innovation.
The researchers are investigating a tiny cell component called an Intracellular nanovesicle (INV) which acts like a courier within a cell by transporting cargo to where it ...
2021-07-21
Classical molecular sieve membranes, with 3D microparticles and 2D nanosheets as primary building blocks, are promising in chemical separation.
Separation within such membranes relies on molecular movement and transport though their intrinsic or artificial nanopores. Since the weak connections by nature between the neighboring "bricks" usually result in intercrystalline gaps in membranes, the prevailing selectivity for classical molecular sieve membranes is moderate.
Recently, a research group led by Prof. YANG Weishen and Dr. BAN Yujie from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) proposed ...
2021-07-21
Professors at Ural Federal University (UrFU, Russia) Sergey Shcheklein and Aleksey Dubinin have developed a technology for generating energy for an electric car engine using methanol. An article describing the technology was published in the International Journal of Hydrogen Energy.
"We pour methanol into the fuel tank. An air converter, which processes methanol into a gas mixture, is installed directly inside the vehicle. A mixture or synthesis gas, consisting of hydrogen and carbon monoxide, is formed in a small volume, which is necessary for the current operation of an electric vehicle engine," said Sergey Shcheklein, head ...
2021-07-21
According to the latest cosmological models, large spiral galaxies such as the Milky Way grew by absorbing smaller galaxies, by a sort of galactic cannibalism. Evidence for this is given by very large structures, the tidal stellar streams, which are observed around them, which are the remains of these satellite galaxies. But the full histories of the majority of these cases are hard to study, because these flows of stars are very faint, and only the remains of the most recent mergers have been detected.
A study led by the Instituto de Astrofísica de Andalucía (IAA-CSIC), with the participation of the Instituto de Astrofísica ...
LAST 30 PRESS RELEASES:
[Press-News.org] Nanostructures enable record high-harmonic generation