PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Milestone: A methane-metal marriage

UA scientists have inserted metal atoms into methane gas molecules -- a potential advancement for industrial hydrocarbon chemistry and our understanding of how nature uses metals in the molecules of living organisms

Milestone: A methane-metal marriage
2010-12-24
(Press-News.org) For the first time, chemists have succeeded in plugging a metal atom into a methane gas molecule, thereby creating a new compound that could be a key in opening up new production processes for the chemical industry, especially for the synthesis of organic compounds, which in turn might have implications for drug development.

The UA research group also is the first to determine the precise structure of this "metal-methane hybrid" molecule, predicted by theoretical calculations but until now never observed in the real world.

The discovery is published in the Journal of the American Chemical Society and was selected for a news spotlight in Chemical and Engineering News magazine, the weekly publication of the American Chemical Society, because of its significance.

In the chemistry world, seemingly simple actions can have big implications. For example, squeezing zinc atoms into methane gas molecules. This so-called metal-methane insertion is neither a complicated chemical reaction nor something that is likely to happen in nature, but it's very hard to do in the lab. What is even harder is figuring out what the resulting molecule looks like. But chemists like to tinker with things. And the chemical industry likes to tinker with things even more, especially when that tinkering could lead to useful products.

"There is a big push in the chemical industry and in chemistry in general, to make use of fairly common organic compounds such as methane and turn them into something that can serve as a source for a product," said Lucy Ziurys, who led the research effort. "For example, a plastic or a polymer, something that is more useful than just taking the methane and burning it."

"Our finding could make industrial applications easier, cheaper, quicker, and they could start with this simple compound, methane. They could convert it to all kinds of more complex and more valuable products."

"Gaining a better understanding of these simple reactions that we really don't understand at the basic level always has applications to more complicated systems," Ziurys added.

Ziurys is a professor of chemistry and a professor of astronomy with joint appointments in the UA's department of chemistry and biochemistry and Steward Observatory.

Methane gas, produced naturally by decaying organic matter, is familiar to many as the main ingredient in natural gas. It is also a potent greenhouse gas, more powerful than carbon dioxide. Budding chemistry students are introduced to methane as the simplest of all organic molecules. All organic molecules contain carbon and hydrogen in one way or another, which sets them apart from inorganic molecules such as table salt, which contains sodium and chloride, but no carbon or hydrogen.

When it comes to interacting with other molecules, methane is a bit anti-social. Or, as chemists put it, it is "inert," meaning one has to do a whole lot of nudging and prodding to get methane to bond with other chemicals. Chemists call this nudging and prodding "activating." And that is precisely what the tinkerers in the chemical science community and the industry would like to be able to do.

Said Ziurys: "One way to get these molecules more reactive is by what is called metal insertion. The metal inserts itself into the methane molecule and thereby activates it. It makes it more prone to reacting with something else. So you could then take this activated methane and make, say, methanol."

"Until now, there was no complete evidence that the metal actually inserts itself into the molecule bond and forms this complex. People just assumed it did," she said. "But we are the first to actually prove the existence of the complex and describe its structure to a very high degree of accuracy. It's the first time anyone has been able to do this."

The new compound is stable for a few seconds – long enough for industrial applications to immediately convert it to something else.

To create the molecule and analyze its structure, Ziurys' research group heated zinc until it vaporized in a vacuum chamber and added methane gas. An electrical discharge fed energy into the system, converting the gas mixture into glowing plasma, sparking the formation of the metal-methane molecule. Most of the experiments were done by Michael Flory, a former graduate student of Ziurys', as part of his doctoral thesis.

"We made the molecule in a gas phase, which is the only way we can really obtain a good measurement of the structure," Ziurys said. "Almost every theory paper said this couldn't be made in the gas phase, which is probably why nobody really tried it before."

"Our data show that zinc goes right in and pops into that bond that links the carbon atom to one of the four hydrogen atoms in methane. People have speculated on that, but this is the first time anyone has shown that that is what actually happens."

Because none of these processes are visible to the naked eye, the scientists used a microwave source to send electromagnetic energy at defined wavelengths through the plasma. Here is the trick: Any given molecule absorbs some of that energy at a very distinct wavelength, depending on its chemical structure. By detecting those dips in the energy inside the chamber, each species of molecule leaves its own energy dip as a telltale signature that can be picked up by a detector. This process is called direct-absorption spectroscopy.

As is often the case with scientific discoveries, Ziurys' team was after a completely different type of molecule.

"We searched in our spectra for them, but we never found them. Instead, we found our methane with zinc in it," Ziurys said. "That really surprised us. We didn't expect that to be there."

The group did the necessary experiments to confirm the structure of the elusive molecule and everything fell together, Ziurys said.

"We knew exactly what we had. Those molecules are floating around and they rotate, generating a certain spectral pattern, depending on the mass of the molecule and the bond lengths between the atoms they are made of. We then exchange the atoms for slightly different versions with different masses, and we get a slight change in inertia, which results in a changed rotational pattern. Then we apply the math and we get a structure."

Nature makes abundant use of metal atoms embedded in complex organic molecules. In fact, metals are involved in almost any sort of complicated chemical reaction in living systems. One example is hemoglobin and iron, the large protein molecule that contains iron atoms in precise arrangements to capture oxygen and transport it around in our blood stream.

"We know that metals play important roles in biology, but we don't have a very good understanding of those processes," said Ziurys. "If we did, we'd be able to use them much better."

According to Ziurys, zinc is one of the most biologically important metals, used by many enzymes to perform their jobs.

"How does Zinc react? How does it work? If we understand how it does in simple molecules like methane, eventually we should be able to generalize to much more complicated systems like enzymes."



INFORMATION:


[Attachments] See images for this press release:
Milestone: A methane-metal marriage

ELSE PRESS RELEASES FROM THIS DATE:

How exercise grows a healthy heart

2010-12-24
Everyone knows that exercise comes with metabolic and cardiovascular benefits, but scientists understand surprisingly little about how physical activity influences the heart itself. Now, a new study in the December 23rd issue of Cell, a Cell Press publication, offers some of the first molecular-level insights. The studies in mice suggest that exercise turns on a genetic program that leads the heart to grow as heart muscle cells divide. It appears that shift in activity is driven in part by a single transcription factor (a gene that controls other genes). That gene, known ...

You are what your father ate too

2010-12-24
We aren't just what we eat; we are what our parents ate too. That's an emerging idea that is bolstered by a new study showing that mice sired by fathers fed on a low-protein diet show distinct and reproducible changes in the activity of key metabolic genes in their livers. Those changes occurred despite the fact that the fathers never saw their offspring and spent minimal time with their mothers, the researchers say, suggesting that the nutritional information is passed on to the next generation via the sperm not through some sort of social influence. The new findings ...

Protein involved in early steps of melanoma development revealed

2010-12-24
LA JOLLA, Calif., December 23, 2010 – Melanoma is one of the least common types of skin cancer, but it is also the most deadly. Melanocytes (pigment-producing skin cells) lose the genetic regulatory mechanisms that normally limit their number, allowing them to divide and proliferate out of control. One such regulator, called MITF, controls an array of genes that influence melanocyte development, function and survival. Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) and their collaborators recently used a melanoma mouse model, cell cultures and ...

Gatekeeper for tomato pollination identified

2010-12-24
Tomato plants use similar biochemical mechanisms to reject pollen from their own flowers as well as pollen from foreign but related plant species, thus guarding against both inbreeding and cross-species hybridization, report plant scientists at the University of California, Davis. The researchers identified a tomato pollen gene that encodes a protein that is very similar to a protein thought to function in preventing self-pollination in petunias. The tomato gene also was shown to play a role in blocking cross-species fertilization, suggesting that similar biochemical ...

Gene alteration in mice mimics heart-building effect of exercise

2010-12-24
BOSTON--By tweaking a single gene, scientists have mimicked in sedentary mice the heart-strengthening effects of two weeks of endurance training, according to a report from Dana-Farber Cancer Institute and Beth Israel Deaconess Medical Center (BIDMC). The genetic manipulation spurred the animals' heart muscle cells -- called cardiomyocytes -- to proliferate and grow larger by an amount comparable to normal mice that swam for up to three hours a day, the authors write in the journal Cell. This specific gene manipulation can't be done in humans, they say, but the findings ...

Electronic medical records not always linked to better care in hospitals, study finds

2010-12-24
Use of electronic health records by hospitals across the United States has had only a limited effect on improving the quality of medical care, according to a new RAND Corporation study. Studying a wide mix of hospitals nationally, researchers found that hospitals with basic electronic health records demonstrated a significantly higher increase in quality of care for patients being treated for heart failure. However, similar gains were not noted among hospitals that upgraded to advanced electronic health records, and hospitals with electronic health records did not ...

How cells running on empty trigger fuel recycling

How cells running on empty trigger fuel recycling
2010-12-24
LA JOLLA, CA—Researchers at the Salk Institute for Biological Studies have discovered how AMPK, a metabolic master switch that springs into gear when cells run low on energy, revs up a cellular recycling program to free up essential molecular building blocks in times of need. In a paper published in the Dec. 23, 2010 edition of Science Express, a team led by Reuben Shaw, PhD., Howard Hughes Medical Institute Early Career Scientist and Hearst Endowment assistant professor in the Salk's Molecular and Cell Biology Laboratory, reports that AMPK activates a cellular recycling ...

Kidney disease patients: Eat your veggies, reward your kidneys

2010-12-24
Phosphorous levels plummet in kidney disease patients who stick to a vegetarian diet, according to a study appearing in an upcoming issue of the Clinical Journal of the American Society Nephrology (CJASN). The results suggest that eating vegetables rather than meat can help kidney disease patients avoid accumulating toxic levels of this mineral in their bodies. Individuals with kidney disease cannot adequately rid the body of phosphorus, which is found in dietary proteins and is a common food additive. Kidney disease patients must limit their phosphorous intake, as high ...

You are what your father ate

2010-12-24
WORCESTER, Mass. — Scientists at the University of Massachusetts Medical School and the University of Texas at Austin have uncovered evidence that environmental influences experienced by a father can be passed down to the next generation, "reprogramming" how genes function in offspring. A new study published this week in Cell shows that environmental cues—in this case, diet—influence genes in mammals from one generation to the next, evidence that until now has been sparse. These insights, coupled with previous human epidemiological studies, suggest that paternal environmental ...

UCLA researchers uncover new cell biological mechanism that regulates protein stability in cells

UCLA researchers uncover new cell biological mechanism that regulates protein stability in cells
2010-12-24
The cell signaling pathway known as Wnt, commonly activated in cancers, causes internal membranes within a healthy cell to imprison an enzyme that is vital in degrading proteins, preventing the enzyme from doing its job and affecting the stability of many proteins within the cell, researchers at UCLA's Jonsson Comprehensive Cancer Center have found. The finding is important because sequestering the enzyme, Glycogen Synthase Kinase 3 (GSK3), results in the stabilization of proteins in the cell, at least one of which is known to be a key player in cancer, said Dr. Edward ...

LAST 30 PRESS RELEASES:

After 25 years, researchers uncover genetic cause of rare neurological disease

Probing the effects of interplanetary space on asteroid Ryugu

T. rex not as smart as previously claimed, scientists find

Breakthrough in brown fat research: Researchers from Denmark and Germany have found brown fat’s “off-switch”

Tech Extension Co. and Tech Extension Taiwan to build next-generation 3D integration manufacturing lines using Tokyo Tech's BBCube Technology

Atomic nucleus excited with laser: a breakthrough after decades

Losing keys and everyday items ‘not always sign of poor memory’

People with opioid use disorder less likely to receive palliative care at end of life

New Durham University study reveals mystery of decaying exoplanet orbits

The threat of polio paralysis may have disappeared, but enterovirus paralysis is just as dangerous and surveillance and testing systems are desperately needed

Study shows ChatGPT failed when challenging ESCMID guideline for treating brain abscesses

Study finds resistance to critically important antibiotics in uncooked meat sold for human and animal consumption

Global cervical cancer vaccine roll-out shows it to be very effective in reducing cervical cancer and other HPV-related disease, but huge variations between countries in coverage

Negativity about vaccines surged on Twitter after COVID-19 jabs become available

Global measles cases almost double in a year

Lower dose of mpox vaccine is safe and generates six-week antibody response equivalent to standard regimen

Personalised “cocktails” of antibiotics, probiotics and prebiotics hold great promise in treating a common form of irritable bowel syndrome, pilot study finds

Experts developing immune-enhancing therapies to target tuberculosis

Making transfusion-transmitted malaria in Europe a thing of the past

Experts developing way to harness Nobel Prize winning CRISPR technology to deal with antimicrobial resistance (AMR)

CRISPR is promising to tackle antimicrobial resistance, but remember bacteria can fight back

Ancient Maya blessed their ballcourts

Curran named Fellow of SAE, ASME

Computer scientists unveil novel attacks on cybersecurity

Florida International University graduate student selected for inaugural IDEA2 public policy fellowship

Gene linked to epilepsy, autism decoded in new study

OHSU study finds big jump in addiction treatment at community health clinics

Location, location, location

Getting dynamic information from static snapshots

Food insecurity is significant among inhabitants of the region affected by the Belo Monte dam in Brazil

[Press-News.org] Milestone: A methane-metal marriage
UA scientists have inserted metal atoms into methane gas molecules -- a potential advancement for industrial hydrocarbon chemistry and our understanding of how nature uses metals in the molecules of living organisms