(Press-News.org) RICHLAND, Wash.—Diversification reduces risk. That’s the spirit of one key takeaway from a new study led by scientists at the Department of Energy’s Pacific Northwest National Laboratory. The effective path to limiting global warming to 1.5 degrees Celsius by the end of this century likely requires a mix of technologies that can pull carbon dioxide from Earth’s atmosphere and oceans.
Overreliance on any one carbon removal method may bring undue risk, the authors caution. And we’ll likely need them all to remove the necessary amount of carbon dioxide—10 gigatons annually—to secure just 1.5 degrees of warming by 2100.
The new work, published today in the journal Nature Climate Change, outlines the carbon-removing potential of six different methods. They range from restoring deforested lands to spreading crushed rock across landscapes, a method known as enhanced weathering.
This study marks the first attempt to incorporate all carbon dioxide removal approaches recognized in U.S. legislation into a single integrated model that projects how their interactions could measure up on a global scale. It does so while demonstrating how those methods could influence factors like water use, energy demand or available crop land.
The authors explore the potential of these carbon removal methods by modeling decarbonization scenarios: hypothetical futures that demonstrate what kind of interactions could crop up if the technologies were deployed under varying conditions. They explore pathways, for example, where no climate policy is applied (and warming rises to 3.5 degrees as a result).
A second pathway demonstrates what amount of carbon would need to be removed using the technologies under an ambitious policy in which carbon emissions are constrained to decline to net-zero by mid-century and net-negative by late-century to limit end-of-century warming to below 1.5 degrees.
The third scenario follows the same emissions pathway but is paired with behavioral and technological changes, like low material consumption and rapid electrification. In this scenario, these societal changes translate to fewer overall emissions released, which helps reduce the amount of residual greenhouse gas emissions that would need to be offset with carbon removal to meet the 1.5-degree goal.
To meet that target—the original goal of the Paris Agreement—the authors find that roughly 10 gigatons of carbon dioxide must be removed per year. That amount remains the same even if countries were to strengthen efforts to reduce carbon dioxide emissions from all sources.
“Bringing us back down to 1.5 degrees by the end of the century will require a balanced approach,” said lead author PNNL scientist Jay Fuhrman, whose work stems from the Joint Global Change Research Institute. “If one of these technologies fails to materialize or scale up, we don’t want too many eggs in that basket. If we use a globally diverse portfolio of carbon removal strategies, we can mitigate risk while mitigating emissions.”
Some of the technologies stand to contribute a great deal, with the potential to remove several gigatons of carbon dioxide per year. Others offer less, yet still stand to play an important role. Enhanced weathering, for example, could remove up to four gigatons of carbon dioxide annually by mid-century.
Under this method, finely ground rock spread over cropland converts carbon dioxide in the atmosphere into carbonate minerals on the ground. It is among the most cost-effective methods identified in the study.
In comparison, direct ocean capture with carbon storage, where carbon dioxide is stripped from seawater and stored in Earth’s subsurface, would likely remove much less carbon. On its own, the nascent technology is prohibitively expensive, according to the authors. Pairing this method with desalination plants in regions where demand for desalinated water is high, however, could drive down the cost while delivering more meaningful carbon reductions.
In addition to the removal methods mentioned above, the technologies under study include biochar, direct air capture with carbon storage, and bioenergy paired with carbon capture and storage.
Each of the technologies modeled brings unique advantages, costs and consequences. Many of those factors are tied to specific regions. The authors point out Sub-Saharan Africa as an example, where biochar, enhanced weathering and bioenergy with carbon capture and storage stand to contribute significant reductions.
Yet the authors find much work is needed to address greenhouse gases other than carbon dioxide, like methane and nitrous oxide. Many of these non-CO2 gases are several times more potent while simultaneously more difficult to target than carbon dioxide.
While some of the removal methods examined within the new paper are well-studied, their interactions with other, newer methods are less clearly understood. The work originates from the Joint Global Change Research Institute, a partnership between PNNL and the University of Maryland where researchers explore interactions between human, energy and environmental systems.
Their work focuses on projecting what tradeoffs may flow from a range of possible decarbonization scenarios. The authors seek to better understand how these methods interact so that policymakers may be informed in their efforts to decarbonize.
"This study underscores the need for continued research on carbon dioxide removal approaches and their potential impacts," said corresponding author and PNNL scientist Haewon McJeon. "While each approach has its own unique benefits and costs, a diverse portfolio of carbon dioxide removal approaches is essential for effectively addressing climate change. By better understanding the potential impacts of each approach, we can develop a more comprehensive and effective strategy for reducing greenhouse gas emissions and limiting global warming."
In addition to Fuhrman and McJeon, PNNL authors include Candelaria Bergero and Maridee Weber. Seth Monteith and Frances M. Wang of the ClimateWorks Foundation, as well as Andres F. Clarens, Scott C. Doney and William Shobe of the University of Virginia also contributed to this work. This work was supported by the ClimateWorks Foundation, the Alfred P. Sloan Foundation, and the University of Virginia Environmental Resilience Institute.
###
About PNNL
Pacific Northwest National Laboratory draws on its distinguishing strengths in chemistry, Earth sciences, biology and data science to advance scientific knowledge and address challenges in sustainable energy and national security. Founded in 1965, PNNL is operated by Battelle for the Department of Energy’s Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science. For more information on PNNL, visit PNNL's News Center. Follow us on Twitter, Facebook, LinkedIn and Instagram.
END
Diverse approach key to carbon removal
Meeting the world’s climate goals will take more than one form of carbon removal
2023-03-09
ELSE PRESS RELEASES FROM THIS DATE:
New class of drugs may prevent infection by wide range of COVID-19 variants
2023-03-09
Study Title: Pharmacologic disruption of mSWI/SNF complex activity restricts SARS-CoV-2 infection
Publication: Nature Genetics https://www.nature.com/articles/s41588-023-01307-z
Dana-Farber Cancer Institute author: Cigall Kadoch, PhD
Summary:
A new class of oral drugs can inhibit a wide range of SARS-CoV-2 variants, researchers report, potentially identifying new antiviral agents providing broad activity against the constantly emerging new strains of the COVID-19 virus. The researchers discovered that the mammalian SWI/SNF (also called BAF) chromatin remodeling complex, a regulator of gene expression –controls the expression of the ACE2, the ...
MSU research reveals how climate change threatens Asia’s water tower
2023-03-09
EAST LANSING, Mich. – Tibet is known as the “Water Tower of Asia,” providing water to about 2 billion people and supporting critical ecosystems in High Mountain Asia and the Tibetan Plateau, where many of the largest Asian river systems originate. This region is also one of the areas most vulnerable to the compounding effects of climate change and human activities. Michigan State University researchers are identifying policy changes that need to happen now to prepare for the future impacts projected by climate models.
The rapid melting of glaciers and snowpack due to regional temperature increases has caused ...
Arctic river channels changing due to climate change, scientists discover
2023-03-09
A team of international researchers monitoring the impact of climate change on large rivers in Arctic Canada and Alaska determined that, as the region is sharply warming up, its rivers are not moving as scientists have expected.
Dr. Alessandro Ielpi, an Assistant Professor with UBC Okanagan’s Irving K. Barber Faculty of Science, is a landscape scientist and lead author of a paper published this week in Nature Climate Change. The research, conducted with Dr. Mathieu Lapôtre at Stanford University, along with Dr. Alvise Finotello at the University of Padua in Italy, and Université ...
Mass General Brigham researchers uncover metabolic secrets of anaerobes and identify new strategies to treat c. difficile infections
2023-03-09
A team of investigators from Mass General Brigham’s founding members, Brigham and Women’s Hospital (BWH) and Massachusetts General Hospital (MGH), has identified metabolic strategies used by Clostridioides difficile to rapidly colonize the gut. The findings identify methods to better prevent and treat the most common cause of antibiotic-associated diarrhea and healthcare-acquired infections (HAIs). The team’s approach has implications for understanding broader aspects of microbial metabolism, including responses to antibiotics, and production of important metabolites. Results are published ...
Comparison of symptoms associated with SARS-CoV-2 variants among children in Canada
2023-03-09
About The Study: The findings of this study of 1,440 children in Canada with SARS-CoV-2 infection suggest that although the characteristics of presenting symptoms have changed as the SARS-CoV-2 virus has evolved, the proportions of infected children experiencing undesirable outcomes has remained stable.
Authors: Stephen B. Freedman, M.D.C.M., M.Sc., of the University of Calgary in Calgary, Canada, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2023.2328)
Editor’s Note: Please ...
Trends in the prevalence of metabolically healthy obesity among adults
2023-03-09
About The Study: The results of this survey study suggest that the prevalence of metabolically healthy obesity (people with obesity who do not have obesity-related cardiometabolic abnormalities) increased among U.S. adults during the past 2 decades, but differences in trends existed across sociodemographic subgroups. Effective strategies are needed to improve metabolic health status and prevent obesity-related complications in adults with obesity.
Authors: An Pan, Ph.D., of the Huazhong University of Science and Technology in Wuhan, China, and Kun ...
Scientists develop predictable method to downregulate gene translation in plants
2023-03-09
GAO Caixia's group from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences (CAS) has developed a new method of downregulating gene translation to a predictable and desired level in plants by precisely engineering upstream open reading frames (uORFs).
The study was published online in Nature Biotechnology on Mar. 9.
The development and application of genome editing in plants has revolutionized molecular design-based crop breeding. Developing methods for fine-tuning ...
Life in the smoke of underwater volcanoes
2023-03-09
Deep down in the ocean at tectonic plate boundaries, hot fluids rise from so-called hydrothermal vents. The fluids are devoid of oxygen and contain large amounts of metals such as iron, manganese or copper. Some may also transport sulfides, methane and hydrogen. When the hot water mixes with the cold and oxygenated surrounding seawater, so-called hydrothermal plumes develop containing smoke-like particles of metal sulfide. These plumes rise hundreds of meters off the seafloor and disperse thousands of kilometers away from their source. Hydrothermal ...
St Andrews research shows automated sorting can diagnose cancer faster
2023-03-09
This type of automated sorting would allow prioritisation of malignant slides so that pathologists can review them first and reduce the time to diagnosis for patients with cancer.
The final model was able to correctly detect 97% of malignant slides and correctly detect 90% of all slides.
The final model is in two stages. Firstly, the very large images are split into smaller patches and a deep learning model is trained to classify each patch as malignant or not.
Next, a second stage model combines the small patches back together and predicts a classification ...
Transporting antibodies across the blood–brain barrier to treat Alzheimer’s disease
2023-03-09
Researchers led by Tokyo Medical and Dental University (TMDU) find that antibody fragments encapsulated in nanomicelles cross the blood–brain barrier and reduce the levels of toxic Aβ species in the brain of an Alzheimer’s disease model mouse
Tokyo, Japan — Sometimes the best things in life come by chance, when we happen to be in the right place at the right time. Now, researchers from Japan have found a way to ensure that new medications are delivered to the right place in the body and at the right timepoint in disease progression, so that they have the best effect.
In a study published recently in the Journal ...
LAST 30 PRESS RELEASES:
Intelligent covert communication: a leap forward in wireless security
Stand up to cancer adds new expertise to scientific advisory committee
‘You don’t just throw them in a box.’ Archaeologists, Indigenous scholars call on museums to better care for animal remains
Can AI tell us if those Zoom calls are flowing smoothly? New study gives a thumbs up
The Mount Sinai Hospital ranked among world’s best in Newsweek/Statista rankings
Research shows humans have a long way to go in understanding a dog’s emotions
Discovery: The great whale pee funnel
Team of computer engineers develops AI tool to make genetic research more comprehensive
Are volcanoes behind the oxygen we breathe?
The two faces of liquid water
The Biodiversity Data Journal launches its own data portal on GBIF
Do firefighters face a higher brain cancer risk associated with gene mutations caused by chemical exposure?
Less than half of parents think they have accurate information about bird flu
Common approaches for assessing business impact on biodiversity are powerful, but often insufficient for strategy design
Can a joke make science more trustworthy?
Hiring strategies
Growing consumption of the American eel may lead to it being critically endangered like its European counterpart
KIST develops high-performance sensor based on two-dimensional semiconductor
New study links sleep debt and night shifts to increased infection risk among nurses
Megalodon’s body size and form uncover why certain aquatic vertebrates can achieve gigantism
A longer, sleeker super predator: Megalodon’s true form
Walking, moving more may lower risk of cardiovascular death for women with cancer history
Intracortical neural interfaces: Advancing technologies for freely moving animals
Post-LLM era: New horizons for AI with knowledge, collaboration, and co-evolution
“Sloshing” from celestial collisions solves mystery of how galactic clusters stay hot
Children poisoned by the synthetic opioid, fentanyl, has risen in the U.S. – eight years of national data shows
USC researchers observe mice may have a form of first aid
VUMC to develop AI technology for therapeutic antibody discovery
Unlocking the hidden proteome: The role of coding circular RNA in cancer
Advancing lung cancer treatment: Understanding the differences between LUAD and LUSC
[Press-News.org] Diverse approach key to carbon removalMeeting the world’s climate goals will take more than one form of carbon removal