(Press-News.org) Eight years ago, the data was sound but only suggestive, the evidence strong but circumstantial.
Now, the University of Nebraska–Lincoln’s Karrie Weber and colleagues have experimentally confirmed that nitrate, a compound common in fertilizers and animal waste, can help transport naturally occurring uranium from the underground to groundwater.
Their new research backs a 2015 Weber-led study showing that aquifers contaminated with high levels of nitrate — including the High Plains Aquifer residing beneath Nebraska — also contain uranium concentrations far exceeding a threshold set by the Environmental Protection Agency. Uranium concentrations above that EPA threshold have been shown to cause kidney damage in humans, especially when regularly consumed via drinking water.
“Most Nebraskans do rely on groundwater as drinking water,” said Weber, associate professor in the School of Biological Sciences and Department of Earth and Atmospheric Sciences. “In Lincoln, we rely on it. A lot of rural communities, they’re relying on groundwater.
“So when you have high concentrations (of uranium), that becomes a potential concern.”
Research had already established that dissolved inorganic carbon could chemically detach traces of natural, non-radioactive uranium from underground sediment, ultimately priming it for transport into groundwater. But the 2015 study, which found that certain areas of the High Plains Aquifer contained uranium levels up to 89 times the EPA threshold, had convinced Weber that nitrate was contributing, too.
So, with the help of 12 colleagues, Weber set out to test the hypothesis. To do it, the team extracted two cylindrical cores of sediment — each roughly 2 inches wide and running 60 feet deep — from an aquifer site near Alda, Nebraska. That site not only contains natural traces of uranium, the researchers knew, but also allows groundwater to flow east into the adjacent Platte River.
Their goal? Recreate that flow in the samples of sediment, then determine whether adding some nitrate to the water would increase the amount of uranium that got carried away with it.
“One of the things we wanted to make sure of was that we did not alter the state of the uranium or the sediments or the (microbial) community when we collected the samples,” Weber said. “We did everything we could to preserve natural conditions.”
“Everything” meant immediately capping and wax-sealing the extracted cores, sliding them into airtight tubes, flushing those tubes with argon gas to dispel any oxygen, and putting them on ice. Back at the lab, Weber and her colleagues would eventually remove 15-inch segments from each of the two cores. Those segments consisted of sand and also silt that contained relatively high levels of uranium.
Later, the team would fill multiple columns with that silt before pumping simulated groundwater through them at roughly the same rate it would have traveled underground. In some cases, that water contained nothing extra. In others, the researchers added nitrate. And in still other cases, they added both nitrate and an inhibitor designed to halt the biochemical activity of microorganisms living in the sediment.
The water containing nitrate, but lacking the microbial inhibitor, managed to carry away roughly 85% of the uranium — compared with just 55% when the water lacked nitrate and 60% when it contained nitrate but also the inhibitor. Those results implicated both the nitrate and the microbes in further mobilizing the uranium.
They also supported the hypothesis that a series of biochemical events, kicked off by the microbes, was transforming the otherwise-solid uranium into a form that could be easily dissolved in water. First, bacteria living in the sediment donate electrons to the nitrate, catalyzing its transformation into a compound called nitrite. That nitrite then oxidizes — steals electrons from — the neighboring uranium, ultimately turning it from a solid mineral into an aqueous one ready to surf the trickle of water seeping through the silt.
After analyzing DNA sequences present in its sediment samples, the team identified multiple microbial species capable of metabolizing nitrate to nitrite. Though that uranium-mobilizing biochemistry had been known to unfold in highly contaminated areas — uranium mines, sites where nuclear waste is processed — Weber said the new study is the first to establish that the same mobilization process also takes place in natural sediment.
“When we first got this project funded, and we were thinking about this, it was as a primary contaminant leading to secondary contamination,” she said of the nitrate and uranium. “This research supports that, yes, that can happen.”
Still, as Weber said, “Nitrate isn’t always a bad thing.” Both her previous research and some forthcoming studies suggest that nitrate mobilizes uranium only when the compound approaches its own EPA threshold of 10 parts per million.
“If we reflect upon what we published prior, that data suggests there’s a tipping point. The important thing,” she said, “is not to have too much.”
The team reported its findings in the journal Environmental Science & Technology. Weber authored the study with Nebraska’s Jeff Westrop, Pooja Yadav, Alicia Chan, Anthony Kohtz, Olivia Healy, Daniel Snow, P.J. Nolan and Donald Pan; Kate Campbell of the U.S. Geological Survey; Rajesh Singh, from India’s National Institute of Hydrology; along with Sharon Bone and John Bargar of the SLAC National Accelerator Laboratory.
END
Study confirms nitrate can release uranium into groundwater
Experiment reinforces link between contaminants
2023-03-21
ELSE PRESS RELEASES FROM THIS DATE:
PNAS announces six 2022 Cozzarelli Prize recipients
2023-03-21
WASHINGTON, DC – The Editorial Board of the Proceedings of the National Academy of Sciences (PNAS) has selected six papers published by PNAS in 2022 to receive the Cozzarelli Prize, an award that recognizes outstanding contributions to the scientific disciplines represented by the National Academy of Sciences (NAS). Papers were chosen from more than 3,200 research articles that appeared in the journal last year and represent the six broadly defined classes under which the NAS is organized. Additionally, the Editorial ...
Using optics to trace the flow of microplastics in oceans
2023-03-21
Microplastics are tiny plastic particles less than 5 mm in diameter that have emerged as a novel marine environment pollutant. Microplastics usually result from a breakdown of larger plastic debris but can also be generated from plastic microbeads used in personal care products. Over the years, there has been a significant buildup of microplastic pollutants in our oceans, with a recent estimate that the world’s oceans contain over 24.4 trillion pieces of microplastics weighing between 82,000 and 578,000 tons. It is highly likely that ...
First results from ESO telescopes on the aftermath of DART’s asteroid impact
2023-03-21
Using ESO’s Very Large Telescope (VLT), two teams of astronomers have observed the aftermath of the collision between NASA’s Double Asteroid Redirection Test (DART) spacecraft and the asteroid Dimorphos. The controlled impact was a test of planetary defence, but also gave astronomers a unique opportunity to learn more about the asteroid’s composition from the expelled material.
On 26 September 2022 the DART spacecraft collided with the asteroid Dimorphos in a controlled test of our asteroid deflection capabilities. The impact took place 11 million kilometres away ...
Obesity risk may pass from mothers to daughters
2023-03-21
WASHINGTON—Women with obesity may share risk for the disease with their daughters, but not their sons, according to a new study published in the Endocrine Society’s Journal of Clinical Endocrinology & Metabolism.
Obesity is a common, serious and costly disease affecting nearly half of the adults and 20 percent of children in the United States. It costs an estimated $173 billion in medical care costs. People with obesity are at higher risk of developing diabetes, high blood pressure, heart ...
New program for veterans with high cholesterol, associated cardiovascular disease
2023-03-21
DALLAS, March 21, 2023 — More than 2 million veterans are living with atherosclerotic cardiovascular disease (ASCVD) and require management of their high cholesterol, according to the Department of Veterans Affairs (VA). Left unaddressed, high cholesterol increases the chance of experiencing heart attack and stroke. To control high cholesterol among veterans, the American Heart Association, the world’s leading nonprofit organization focused on heart and brain health for all, in collaboration with the VA, ...
An integrated approach to cool: how evaporation and radiation can cool the world
2023-03-21
Large-scale, effective, and passive: these descriptions are aptly given to the integrated radiative and evaporative chiller (IREC), designed and tested by researchers at Tsinghua University in Beijing, China. The goal of this technology is to come up with an energetically affordable method of cooling to aid in the rising consumption of energy while still minimizing carbon emissions through the process.
“Energy scarcity is a universal challenge to global development. The demand for ...
TAMEST names MD Anderson’s Dr. Florencia McAllister recipient of the 2023 Mary Beth Maddox Award & Lectureship
2023-03-21
TAMEST (The Texas Academy of Medicine, Engineering, Science and Technology) has announced Florencia McAllister, M.D., The University of Texas MD Anderson Cancer Center, as the recipient of the 2023 Mary Beth Maddox Award and Lectureship in cancer research. She was chosen for her seminal discoveries at the intersection of microbes, the immune system and pancreatic cancer, leading to insights into early detection, prevention and therapeutic strategies to fight the disease.
The Mary Beth Maddox Award and Lectureship ...
Family Heart Foundation research finds high-risk Americans who do not maintain guideline recommend LDL-C targets have 44% higher rate of cardiovascular events
2023-03-21
SAN ANTONIO, March 21, 2023 – A real-world, retrospective analysis by the Family Heart Foundation, a leading non-profit research and advocacy organization, found that high-risk Americans who do not maintain levels of LDL-cholesterol (LDL-C) recommended in the 2018 American College of Cardiology/American Heart Association cholesterol treatment guidelines, had a 44% higher rate of cardiovascular events compared to those who did achieve and maintained recommended LDL-C levels. The study findings, which were based on data from the Family Heart DatabaseTM of more than 300 million Americans, will be ...
Forest growing season in eastern U.S. has increased by a month
2023-03-21
COLUMBUS, Ohio – The growing period of hardwood forests in eastern North America has increased by an average of one month over the past century as temperatures have steadily risen, a new study has found.
The study compared present-day observations of the time span from budburst to peak leaf coloration in seven tree species to similar documentation that was collected by an Ohio farmer at the turn of the 20th century.
An analysis of changes in those leaf patterns along with decades of temperature data for northwest Ohio showed a clear connection between increased warming during winter and spring and an extended period of tree growth.
The implications of the longer growing period – ...
How the "marsupial sabertooth" thylacosmilus saw its world
2023-03-21
A new study investigates how an extinct, carnivorous marsupial relative with canines so large they extended across the top of its skull could hunt effectively despite having wide-set eyes, like a cow or a horse. The skulls of carnivores typically have forward-facing eye sockets, or orbits, which helps enable stereoscopic (3D) vision, a useful adaptation for judging the position of prey before pouncing. Scientists from the American Museum of Natural History and the Instituto Argentino de Nivología, ...
LAST 30 PRESS RELEASES:
Scientists unlock secrets behind flowering of the king of fruits
Texas A&M researchers illuminate the mysteries of icy ocean worlds
Prosthetic material could help reduce infections from intravenous catheters
Can the heart heal itself? New study says it can
Microscopic discovery in cancer cells could have a big impact
Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer
Breakthrough new material brings affordable, sustainable future within grasp
How everyday activities inside your home can generate energy
Inequality weakens local governance and public satisfaction, study finds
Uncovering key molecular factors behind malaria’s deadliest strain
UC Davis researchers help decode the cause of aggressive breast cancer in women of color
Researchers discovered replication hubs for human norovirus
SNU researchers develop the world’s most sensitive flexible strain sensor
Tiny, wireless antennas use light to monitor cellular communication
Neutrality has played a pivotal, but under-examined, role in international relations, new research shows
Study reveals right whales live 130 years — or more
Researchers reveal how human eyelashes promote water drainage
Pollinators most vulnerable to rising global temperatures are flies, study shows
DFG to fund eight new research units
Modern AI systems have achieved Turing's vision, but not exactly how he hoped
Quantum walk computing unlocks new potential in quantum science and technology
Construction materials and household items are a part of a long-term carbon sink called the “technosphere”
First demonstration of quantum teleportation over busy Internet cables
Disparities and gaps in breast cancer screening for women ages 40 to 49
US tobacco 21 policies and potential mortality reductions by state
AI-driven approach reveals hidden hazards of chemical mixtures in rivers
Older age linked to increased complications after breast reconstruction
ESA and NASA satellites deliver first joint picture of Greenland Ice Sheet melting
Early detection model for pancreatic necrosis improves patient outcomes
Poor vascular health accelerates brain ageing
[Press-News.org] Study confirms nitrate can release uranium into groundwaterExperiment reinforces link between contaminants