PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Underground water could be the solution to green heating and cooling

Decarbonizing the grid means storing energy from renewables. Aquifers can do that.

Underground water could be the solution to green heating and cooling
2023-04-05
(Press-News.org) About 12% of the total global energy demand comes from heating and cooling homes and businesses. A new study suggests that using underground water to maintain comfortable temperatures could reduce consumption of natural gas and electricity in this sector by 40% in the U.S. The approach, called aquifer thermal energy storage (ATES), could also help prevent blackouts caused by high power demand during extreme weather events.

“We need storage to absorb the fluctuating energy from solar and wind, and most people are interested in batteries and other kinds of electrical storage. But we were wondering whether there's any opportunity to use geothermal energy storage, because heating and cooling is such a predominant part of the energy demand for buildings,” said first author A.T.D Perera, a former postdoctoral researcher at Lawrence Berkeley National Laboratory (Berkeley Lab), now at Princeton University’s Andlinger Center for Energy and Environment. 

“We found that, with ATES, a huge amount of energy can be stored, and it can be stored for a long period of time,” Perera said. “As a result, the heating and cooling energy demand during extreme hot or cold periods can be met without adding an additional burden on the grid, making urban energy infrastructure more resilient.”

The study, published this week in Applied Energy, is one of the first examinations of how ATES could fit into the larger goal of decarbonizing U.S. energy systems by storing intermittent renewable energy to use when the sun isn’t shining and the turbines aren’t spinning. After building a comprehensive technological and economic simulation of an energy system, the authors found that ATES is a compelling option for heating and cooling energy storage that, alongside other technologies such as batteries, could help end our reliance on fossil fuel-derived backup power and enable a fully renewable grid.

Putting thermodynamics to work

ATES is a delightfully simple concept that leverages the heat-absorbing property of water and the natural geological features of the planet. You simply pump water up from existing underground reservoirs and heat it at the surface in the summer with environmental heat or excess energy from solar, or any time of the year with wind. Then you pump it back down. 

“It actually stays fairly hot because the Earth is a pretty good insulator,” explained co-author Peter Nico, deputy director of the Energy Geosciences Division at Berkeley Lab and lead of the Resilient Energy, Water and Infrastructure Domain. “So then when you pull it up in the winter, months later, that water's way hotter than the ambient air and you can use it to heat your buildings. Or vice versa, you can pull up water and let it cool and then you can put it back down and store it until you need cooling during hot summer months. It's a way of storing energy as temperature underground.”

ATES is not yet widely used in the U.S., though it is gaining recognition internationally, most notably in the Netherlands. One major perk is that these systems get “free” thermal energy from seasonal temperature changes, which can be bolstered by the addition of artificial heating and cooling generated by electricity. As such, they perform very well in areas with large seasonal fluctuations, but have the potential to work anywhere, so long as there is wind or solar to hook up to. In regards to other impacts, ATES systems are designed to avoid impinging upon critical drinking water resources – often the water used is from deeper aquifers than the drinking water supply – and do not introduce any chemicals into the water.

How does it perform?

To get some concrete numbers estimating how much energy ATES could save on the U.S. grid, and how much it would cost to deploy, the team designed a case study using a computational model of a neighborhood in Chicago. This virtual neighborhood was composed of 58 two-story, single-family residence buildings with typical residential heating and cooling that were hooked up to a simulation of an energy grid with multiple possible energy sources and storage options, including ATES. Future climate projections were used to understand how much of the neighborhood’s total energy budget is taken up by heating and cooling demands currently, and how this might change in the future. Finally, a microgrid simulation was designed for the neighborhood that included renewable energy technologies and ATES to evaluate the technoeconomic feasibility and climate resilience. Putting all these factors together into one model would not have been possible without the team’s diverse expertise across the energy geosciences, climate science, and building science fields.

The results showed that adding ATES to the grid could reduce consumption of petroleum products by up to 40%, though it would cost 15 to 20% more than existing energy storage technologies.   

“But, on the other hand, energy storage technologies are having sharp cost reductions, and after just a few years of developing ATES, we could easily break even. That’s why it’s quite important that we start to invest in this research and start building real-world prototype systems,” said Perera.

“ATES does not need space compared with above-ground tank-based water or ice storage systems. ATES is also more efficient and can scale up for large community cooling or heating compared with traditional geothermal heat pump systems that rely on heat transfer with the underground earth soil,” added Tianzhen Hong, a co-author and senior scientist at the Building Technology and Urban Systems Division.

Another major benefit of ATES is that it will become more efficient as weather becomes more extreme in the coming years due to climate change. The hotter summers and harsher winters predicted by the world’s leading climate models will have many downsides, but one upside is that they could supercharge the amount of free thermal energy that can be stored with ATES. “It’s making lemonade, right? If you're going to have these extreme heat events, you might as well store some of that heat for when you have the extreme cold event,” said Nico. 

ATES will also make the future grid more resilient to outages caused by high power demands during heat waves – which happen quite often these days in many high-population U.S. areas, including Chicago – because ATES-driven cooling uses far less electricity than air conditioners, it only needs enough power to pump the water around. 

“It's very much a realistic thing to do and this work was really about showing its value and how the costs can be offset,” said Nico. “This technology is ready to go, so to speak. We just need to do it.”

This research was funded by the Department of Energy’s Geothermal Technologies Office.

# # #

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 16 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

END


[Attachments] See images for this press release:
Underground water could be the solution to green heating and cooling Underground water could be the solution to green heating and cooling 2 Underground water could be the solution to green heating and cooling 3

ELSE PRESS RELEASES FROM THIS DATE:

WVU researchers earn $8M for rare earth extraction facility, an economic and environmental game changer

WVU researchers earn $8M for rare earth extraction facility, an economic and environmental game changer
2023-04-05
West Virginia University researchers will continue to develop and advance their pioneering method to extract and separate rare earth elements and critical minerals from acid mine drainage and coal waste, courtesy of $8 million in new funding from the U.S. Department of Energy. The grant, part of President Joe Biden’s Investing in America agenda, will lead to the design, construction and operation of a pre-commercial demonstration facility for separating and refining rare earth elements and critical minerals, according to Paul Ziemkiewicz, project lead and director of the West Virginia Water ...

Danger or pleasure? How we learn to tell the difference

Danger or pleasure? How we learn to tell the difference
2023-04-05
Deep within our brain’s temporal lobes, two almond-shaped cell masses help keep us alive. This tiny region, called the amygdala, assists with a variety of brain activities. It helps us learn and remember. It triggers our fight-or-flight response. It even promotes the release of a feel-good chemical called dopamine. Scientists have learned all this by studying the amygdala over hundreds of years. But we still haven’t reached a full understanding of how these processes work. Now, Cold Spring Harbor Laboratory neuroscientist Bo Li has brought us several important steps closer. His lab recently made a series of discoveries ...

Ice sheets can collapse faster than previously thought possible

Ice sheets can collapse faster than previously thought possible
2023-04-05
Ice sheets can retreat up to 600 metres a day during periods of climate warming, 20 times faster than the highest rate of retreat previously measured. An international team of researchers, led by Dr Christine Batchelor of Newcastle University, UK, used high-resolution imagery of the seafloor to reveal just how quickly a former ice sheet that extended from Norway retreated at the end of the last Ice Age, about 20,000 years ago.  The team, which also included researchers from the universities of Cambridge and Loughborough in the UK and the Geological Survey of Norway, mapped more than 7,600 small-scale landforms called ‘corrugation ridges’ across the seafloor. The ridges ...

Chinese researchers achieve superionic hydride ion conduction at ambient temperatures

2023-04-05
Materials that can conduct negatively charged hydrogen atoms in ambient conditions would pave the way for advanced clean energy storage and electrochemical conversion technologies. A research team from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) demonstrated a technique that enables a room-temperature all-solid-state hydride cell by introducing and exploiting defects in the lattice structure of rare earth hydrides. Their study was published in Nature on April 5. Solid materials ...

Therapy for babies with signs of autism cuts long-term disability costs

Therapy for babies with signs of autism cuts long-term disability costs
2023-04-05
New research evaluating the potential cost savings of a therapy for babies displaying early autism signs has predicted a three dollar return to Australia’s National Disability Insurance Scheme (NDIS) for every dollar invested in therapy.   Published in the prestigious JAMA Network Open, the health economic study drew on the results of a landmark multi-centre randomised clinical trial which reported the world’s first evidence that a therapy commenced in infancy (iBASIS-VIPP)* could reduce early developmental disability to the point where a childhood clinical autism diagnosis was two-thirds ...

CHOP researchers reveal complex assembly process involved in DNA virus replication

2023-04-05
Philadelphia, April 5, 2023—In a twist on the question, “Which came first, the chicken or the egg?”, scientists have long faced a similar question about how human adenovirus replicates: “Which comes first, assembly of the viral particle, or packaging of the viral genome?” Now, in a new study published today in Nature, researchers at Children’s Hospital of Philadelphia (CHOP) have answered that question, showing that viral proteins use a process called phase separation to coordinate production ...

Trends in suicidal thoughts, behaviors among veterans during pandemic

2023-04-05
About The Study: The prevalence of suicidal thoughts and behaviors has not increased for most U.S. veterans during the first three years of the COVID-19 pandemic. However, veterans with pre-existing loneliness, psychiatric distress, and lower purpose in life were at heightened risk of developing new-onset suicidal ideation and suicide planning during the pandemic. Evidence-based prevention and intervention efforts that target these factors may help mitigate suicide risk in this population. Authors: Ian C. Fischer, Ph.D., of the ...

Historical redlining, social determinants of health, and stroke prevalence in communities in New York City

2023-04-05
About The Study: This study found that historical redlining was associated with modern-day stroke prevalence in New York City independently of contemporary social determinants of health and community prevalence of some relevant cardiovascular risk factors.  Authors: Benjamin M. Jadow, B.A., of the Albert Einstein College of Medicine in Bronx, New York, is the corresponding author.  To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/  (doi:10.1001/jamanetworkopen.2023.5875) Editor’s Note: Please see the article ...

The unexpected contribution of medieval monks to volcanology

2023-04-05
By observing the night sky, medieval monks unwittingly recorded some of history’s largest volcanic eruptions. An international team of researchers, led by the University of Geneva (UNIGE), drew on readings of 12th and 13th century European and Middle Eastern chronicles, along with ice core and tree ring data, to accurately date some of the biggest volcanic eruptions the world has ever seen. Their results, reported in the journal Nature, uncover new information about one of the most volcanically active periods in Earth’s ...

Is artificial intelligence better at assessing heart health?

2023-04-05
Who can assess and diagnose cardiac function best after reading an echocardiogram: artificial intelligence (AI) or a sonographer?  According to Cedars-Sinai investigators and their research published today in the peer-reviewed journal Nature, AI proved superior in assessing and diagnosing cardiac function when compared with echocardiogram assessments made by sonographers.   The findings are based on a first-of-its-kind, blinded, randomized clinical trial of AI in cardiology led by investigators in the Smidt Heart Institute and the Division of Artificial Intelligence in Medicine at Cedars-Sinai.  “The results have immediate implications for ...

LAST 30 PRESS RELEASES:

CAR-T cells can arm bystander T cells with CAR molecules via trogocytosis

Can ocean-floor mining oversights help us regulate space debris and mining on the Moon?

Observing ozonated water’s effectiveness against SARS-CoV-2 in saliva

Alcohol-related deaths up 18% during pandemic

Mothers of twins face a higher risk of heart disease in the year after birth

A new approach to detecting Alzheimer’s disease

Could the contraceptive pill reduce risk of ovarian cancer?

Launch of the most comprehensive, and up to date European Wetland Map

Lurie Children’s campaign urges parents to follow up right away if newborn screening results are abnormal

Does drinking alcohol really take away the blues? It's not what you think

Speed of risk perception is connected to how information is arranged

High-risk pregnancy specialists analyze AI system to detect heart defects on fetal ultrasound exams

‘Altar tent’ discovery puts Islamic art at the heart of medieval Christianity

Policy briefs present approach for understanding prison violence

Early adult mortality is higher than expected in US post-COVID

Recycling lithium-ion batteries cuts emissions and strengthens supply chain

Study offers new hope for relieving chronic pain in dialysis patients

How does the atmosphere affect ocean weather?

Robots get smarter to work in sewers

Speech Accessibility Project data leads to recognition improvements on Microsoft Azure

Tigers in the neighborhood: How India makes room for both tigers and people

Grove School’s Arthur Paul Pedersen publishes critical essay on scientific measurement literacy

Moffitt study finds key biomarker to predict KRASG12C inhibitor effectiveness in lung cancer

Improving blood transfusion monitoring in critical care patients: Insights from diffuse optics

Powerful legal and financial services enable kleptocracy, research shows

Carbon capture from constructed wetlands declines as they age

UCLA-led study establishes link between early side effects from prostate cancer radiation and long-term side effects

Life cycles of some insects adapt well to a changing climate. Others, not so much.

With generative AI, MIT chemists quickly calculate 3D genomic structures

The gut-brain connection in Alzheimer’s unveiled with X-rays

[Press-News.org] Underground water could be the solution to green heating and cooling
Decarbonizing the grid means storing energy from renewables. Aquifers can do that.