(Press-News.org) Perovskite solar cells (PVSCs) are a promising alternative to traditional silicon-based solar cells because of their high power-conversion efficiency and low cost. However, one of the major challenges in their development has been achieving long-term stability. Recently, a research team from City University of Hong Kong (CityU) made a breakthrough by developing an innovative multifunctional and non-volatile additive which can improve the efficiency and stability of perovskite solar cells by modulating perovskite film growth. This simple and effective strategy has great potential for facilitating the commercialisation of PVSCs.
“This type of multifunctional additive can be generally used to make different perovskite compositions for fabricating highly efficient and stable perovskite solar cells. The high-quality perovskite films will enable the upscaling of large-area solar panels,” explained Professor Alex Jen Kwan-yue, Lee Shau Kee Chair Professor of Materials Science and Director of the Hong Kong Institute for Clean Energy at CityU, who led the study.
PVSCs have attracted significant attention due to their impressive solar power conversion efficiency (PCE). Since perovskites can be deposited from solutions onto the fabrication surfaces, PVSCs have the potential to be applied in building-integrated photovoltaics (BIPV), wearable devices, and solar farm applications. However, the efficiency and stability are still affected by the severe energy loss associated with defects embedded at the interfaces and grain boundaries of the perovskites. Therefore, the intrinsic quality of perovskite film plays a critical role in determining the achievable efficiency and stability of PVSCs.
Although many previous research studies have focused on improving the film morphology and quality with volatile additives, these additives tend to escape from the film after annealing, creating a void at the perovskite-substrate interface.
To tackle these issues, the CityU researchers developed a simple but effective strategy of modulating the perovskite film growth to enhance the film quality. They found that by adding a multifunctional molecule (4-guanidinobenzoic acid hydrochloride, (GBAC)) to the perovskite precursor, a hydrogen-bond-bridged intermediate phase is formed and modulates the crystallization to achieve high-quality perovskite films with large perovskite crystal grains and coherent grain growth from the bottom to the surface of the film. This molecule can also serve as an effective defect passivation linker (a method to reduce the defect density of perovskite film) in the annealed perovskite film due to its non-volatility, resulting in significantly reduced non-radiative recombination loss and improved film quality.
Their experiments showed that the defect density of perovskite films can be significantly reduced after introducing GBAC. The power conversion efficiency of inverted (p-i-n) perovskite solar cells based on the modified perovskites was boosted to 24.8% (24.5% certified by the Japan Electrical Safety & Environment Technology Laboratories), which is among the highest values reported in the literature. Also, the overall energy loss of the device was reduced to 0.36eV, representing one of the lowest energy losses among the PVSC devices with high power conversion efficiency.
Additionally, the unencapsulated devices exhibit improved thermal stability beyond 1,000 hours under continuous heating at 65 ± 5°C in a nitrogen-filled glovebox while maintaining 98% of the original efficiency.
The team demonstrated the general applicability of this strategy for different perovskite compositions and large-area devices. For example, a larger area device (1 cm2) in the experiment delivered a high PCE of 22.7% with this strategy, indicating excellent potential for fabricating scalable, highly efficient PVSCs.
“This work provides a clear path to achieving optimised perovskite film quality to facilitate the development of highly efficient and stable perovskite solar cells and their upscaling for practical applications,” said Professor Jen.
In the future, the team aims to further extend the molecular structures and optimize the device structure through compositional and interfacial engineering. They will also focus on the fabrication of large-area devices.
The findings were published in the scientific journal Nature Photonics under the title "Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability".
Professor Jen is the corresponding author of the research. The co-first authors are Miss Li Fengzhu and Dr Deng Xiang from Professor Jen’s research group. Other team members from CityU include Dr Chen Xiankai, Dr Tsang Sai‐wing, Dr Yang Zhengbao, Dr Francis Lin and Dr Wu Shengfan.
The research was supported by CityU, the Innovation and Technology Commission, the Research Grants Council, the Green Tech Fund of the Environment and Ecology Bureau in Hong Kong, the Guangdong Major Project of Basic and Applied Basic Research, and the Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials.
https://www.cityu.edu.hk/research/stories/2023/05/04/cityu-researchers-develop-additive-efficiently-improve-efficiency-and-stability-perovskite-solar-cells
END
CityU researchers develop an additive to efficiently improve the efficiency and stability of perovskite solar cells
2023-05-04
ELSE PRESS RELEASES FROM THIS DATE:
Research reveals longstanding cultural continuity at oldest occupied site in West Africa
2023-05-04
Evidence from West Africa about human evolution remains scarce, but recent research has indicated unique patterns of cultural change in comparison to other regions of the continent. A new article in the journal Nature Ecology and Evolution adds to our understanding with a study of the oldest directly dated archaeological site in West Africa. The site shows technological continuity spanning roughly 140,000 years and offers insights into the ecological stability of the region.
Our species emerged in Africa around 300 thousand years ago and ...
A simple antibacterial treatment solves a severe skin problem caused by radiation therapy
2023-05-04
BRONX, NY—May 4, 2023—Acute radiation dermatitis (ARD)—characterized by red, sore, itchy or peeling skin—affects up to 95% of people undergoing radiation treatment for cancer. Severe cases can cause significant swelling and painful skin ulcers that can severely impair quality of life, yet little is known about why this condition occurs and no standardized treatments for preventing severe ARD have been widely adapted.
Researchers at Montefiore Einstein Cancer Center (MECC) have found that many cases of ARD involve a common skin bacterium and that a simple, low-cost treatment ...
Fred Hutch study highlights racial disparities in ovarian cancer risk for women
2023-05-04
SEATTLE, WA — May 4, 2023 — A new Fred Hutchinson Cancer Center study in the journal Obstetrics & Gynecology investigated how endometriosis, uterine leiomyomas (also known as fibroids) and a common intervention for these conditions—hysterectomy—changed ovarian cancer risk in Black and white women.
Scientists found fibroids were associated with an increased risk of ovarian cancer in both Black and white women, with hysterectomy modifying the risk of cancer in both groups. However, researchers also found that while Black and white women with endometriosis had a higher risk of ovarian cancer overall, hysterectomy only ...
Vanishing glaciers threaten alpine biodiversity
2023-05-04
Vanishing glaciers threaten alpine biodiversity
With glaciers melting at unprecedented rates due to climate change, invertebrates that live in the cold meltwater rivers of the European Alps will face widespread habitat loss, warn researchers.
Many of the species are likely to become restricted to cold habitats that will only persist higher in the mountains, and these areas are also likely to see pressures from the skiing and tourism industries or from the development of hydroelectric plants.
The research study – led jointly by the University of Leeds and ...
Neuropathic pain: The underlying mechanism and a potential therapeutic target are revealed in mice
2023-05-04
BIRMINGHAM, Ala. – Neuropathic pain — abnormal hypersensitivity to stimuli — is associated with impaired quality of life and is often poorly managed. Estimates suggest that 3 percent to 17 percent of adults suffer from neuropathic pain, including a quarter of people with diabetes and a third of people with HIV.
In a paper published in the journal Neuron, researchers report that a mechanism involving the enzyme Tiam1 in dorsal horn excitatory neurons of the spinal cord both initiates and maintains neuropathic pain. Moreover, they show that targeting spinal Tiam1 with anti-sense oligonucleotides injected ...
Breast cancer tumors disrupt the immune system remotely favoring their own growth
2023-05-04
Researchers at Baylor College of Medicine and collaborating institutions have identified a strategy cancerous tumors use to remotely disrupt the development of an immune response that could stop their growth.
Published in the journal Cell Stem Cell, the study shows in animal models that breast cancer tumors send molecular signals to the bone marrow, the birthplace of immune cells. The signals alter the natural environment of the bone marrow in such a way that it suppresses the response to fight back the tumor. Interestingly, ...
Young men at highest risk of schizophrenia linked with cannabis use disorder
2023-05-04
Young men with cannabis (marijuana) use disorder have an increased risk of developing schizophrenia, according to a study led by researchers at the Mental Health Services in the Capital Region of Denmark and the National Institute on Drug Abuse (NIDA) at the National Institutes of Health. The study, published in Psychological Medicine, analyzed detailed health records data spanning 5 decades and representing more than 6 million people in Denmark to estimate the fraction of schizophrenia cases that could be attributed ...
Adherence to lifestyle recommendations and breast cancer recurrence prevention
2023-05-04
About The Study: In this observational study of 1,340 women with high-risk breast cancer, strongest collective adherence to cancer prevention lifestyle recommendations was associated with significant reductions in disease recurrence and mortality. Education and implementation strategies to help patients adhere to cancer prevention recommendations throughout the cancer care continuum may be warranted in breast cancer.
Authors: Rikki A. Cannioto, Ph.D., Ed.D., of the Roswell Park Comprehensive ...
Association of biomarker-based AI with risk of racial bias in retinal images
2023-05-04
About The Study: Results of this diagnostic study including 4,095 retinal fundus images collected from 245 neonates suggest that it can be very challenging to remove information relevant to self-reported race from fundus photographs. As a result, AI algorithms trained on fundus photographs have the potential for biased performance in practice, even if based on biomarkers rather than raw images. Regardless of the methodology used for training AI, evaluating performance in relevant subpopulations is critical.
Authors: J. ...
Cellular traffic controllers caught managing flow of signals from receptors
2023-05-04
Proteins that act like air traffic controllers, managing the flow of signals in and out of human cells, have been observed for the first time with unprecedented detail using advanced microscopy techniques.
Described in new research published today in Cell, an international team of researchers led by Professor Davide Calebiro from the University of Birmingham has seen how beta-arrestin, a protein involved in managing a common and important group of cellular gateways, known as receptors, works.
Beta-arrestin is involved in controlling the activity of G protein-coupled receptors (GPCRs) which are the largest group of receptors ...