(Press-News.org) A recent study led by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of Zurich has revealed that the organic compounds proposed for carbon sequestration in deep soil are highly vulnerable to decomposition under global warming.
The finding has implications for a key strategy in carbon management that relies on soil and forests – natural carbon “sinks” – to mitigate global warming.
About 25 percent of global carbon emissions are captured by forests, grasslands, and rangelands. During photosynthesis, plants store carbon in their cell walls and in the soil. Because of rich carbon stores from decades past, soils contain twice as much carbon as the atmosphere does, and deeper subsoils (more than 8 inches or 20 centimeters) account for roughly half of the soil carbon. But as global populations rise, so do our demands for new croplands and timber. Research shows that disturbing the natural world for commerce has a price: the United Nations’ Intergovernmental Panel on Climate Change has warned that emissions from deforestation and agriculture account for around a fifth of global greenhouse gases.
“Our study shows that climate change will affect all aspects of soil carbon and nutrient cycling. It also shows that in terms of carbon sequestration, there’s no silver bullet. If we want soil to sustain carbon sequestration in a warming world, we will need better soil management practices, which can mean minimal disturbance of soils during forest management and agriculture,” said Margaret Torn, a senior scientist in Berkeley Lab’s Earth & Environmental Sciences Area and a senior author of the study.
In 2021, Torn and her research team provided the first physical evidence that warmer temperatures lead to a significant drop in the carbon stocks stored in deep forest soils – a loss of 33% over five years.
In the new study, Torn and first author Cyrill Zosso of the University of Zurich unveil a clearer picture of soil in a warming world. This time, the research team is the first to show that warmer temperatures lead to a significant drop in the soil organic carbon compounds that are created by plants during photosynthesis.
During an experiment at the University of California’s Blodgett Forest Research Station in the foothills of California’s Sierra Nevada mountains, the researchers used vertical heating rods to continuously warm 1-meter-deep (three-foot-deep) plots of soil by 4 degrees Celsius (7 degrees Fahrenheit). That is the amount of warming projected by the end of the 21st century if greenhouse gas emissions remain high.
They found that just 4.5 years of warming at this temperature led to large changes in carbon stocks at a depth of more than 30 centimeters (or approximately 12 inches) below the soil surface.
During spectroscopic experiments at the University of Zurich, Zosso identified the organic compounds that were affected by the warming.
The results were shocking: a 17% loss in lignin – the compounds that give plants rigidity – and a nearly 30% loss in cutin and suberin, the waxy compounds in leaves, stems, and roots that protect plants from pathogens.
Torn and Zosso were also surprised to find a significant difference in the amount of “pyrogenic carbon” in the soil samples that were artificially heated versus the ones that were not. Pyrogenic carbon is a type of soil organic carbon derived from charred vegetation and other organic matter remnants left in the wake of a wildfire.
Many researchers assume that pyrogenic carbon has the most potential to serve as a very stable form of sequestered carbon. “We found much less pyrogenic carbon in the deep soils when they were heated,” Torn said.
“Pyrogenic carbon can stay in the soil for decades or even centuries, but we need to understand its vulnerability to warming or to changes in land management. Our study suggests that this material decomposed just as fast as anything else would when the soil was warmed,” Torn explained. “This shows that when you put material deep into soil where it’s in contact with minerals and microbes, those natural systems will decompose the material over time.”
The researchers next plan to resample soil from the study to determine how nine years of warming impact soil composition and health. A new grassland warming experiment at the Point Reyes National Seashore in Northern California is also on the horizon. “We are also organizing all the world’s deep-soil warming (or whole-soil warming) experiments to share data and know-how and conducting synthesis of the data to see what we can learn,” Torn said.
This work was supported by the DOE Office of Science (Office of Biological and Environmental Research) and the Swiss National Science Foundation.
###
Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 16 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy’s Office of Science.
DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.
END
WEST LAFAYETTE, Ind. — A new treatment tested on a high-quality steel alloy produces extraordinary strength and plasticity, two traits that must typically be balanced rather than combined. Ultra-fine metal grains that the treatment produced in the outermost layer of steel appear to stretch, rotate and then elongate under strain, conferring super-plasticity in a way that Purdue University researchers cannot fully explain.
The researchers treated T-91, a modified steel alloy that is used in nuclear and petrochemical ...
NEW YORK – June 14, 2023 – The Cardiovascular Research Foundation (CRF) has announced the TCT 2023 Program Guide is now available. TCT is the annual scientific symposium of CRF and the world’s premier educational meeting specializing in interventional cardiovascular medicine. TCT 2023 will take place October 23-26 in San Francisco, California, at the Moscone Center and will celebrate 35 years of leading the field.
Every year, TCT features major medical research breakthroughs and gathers ...
Scientists have taken a journey back in time to unlock the mysteries of Earth’s early history, using tiny mineral crystals called zircons to study plate tectonics billions of years ago. The research sheds light on the conditions that existed in early Earth, revealing a complex interplay between Earth’s crust, core, and the emergence of life.
Plate tectonics allows heat from Earth’s interior to escape to the surface, forming continents and other geological features necessary for life to emerge. Accordingly, “there has been the assumption that plate tectonics is necessary for life,” says John Tarduno, who teaches in the Department ...
For Immediate Release
Contact
Colleen McDonald
Sr. Consultant, Earned Media - MCW
414.801.3146 | cmcdonald@mcw.edu
Milwaukee, Wis., June 14, 2023 – In a new multi-center study, researchers from the Medical College of Wisconsin (MCW) joined with leading cancer centers from across the nation to examine whether cancer and its treatments accelerate aging. Using novel epigenetic measures to assess biological aging, investigators found that older breast cancer survivors – particularly those exposed to chemotherapy – showed greater epigenetic aging than their same-aged peers without cancer, which ...
WOODS HOLE, Mass. – Nearly a third of Earth’s freshwater resources lie in groundwater – much more than in all lakes, rivers and the atmosphere combined, and exceeded only by the frozen water in polar ice caps. Accordingly, about half of humankind depends on groundwater as a source of drinking water.
Despite the global occurrence and essential importance of groundwater, however, knowledge of the organisms that inhabit it, and how they survive, remains thin.
A recent investigation led by microbial ecologist Emil Ruff of the Marine Biological Laboratory (MBL) has discovered ...
The IEEE Photonics Society invites applications and nominations for the volunteer position of Editor-in-Chief (EiC) for the IEEE Photonics Journal, delivered through IEEE’s research digital library IEEE Xplore. The term for the current EiC will end this year and the Society is conducting an open search for potential candidates.
“The IEEE Photonics Journal led the way for the IEEE, being the IEEE’s first open access journal. We’re excited to find a candidate who can lead this pioneering journal for the next term, and I encourage all qualified ...
WASP-76b is a strange world. Located 634 light-years from Earth in the direction of the constellation of Pisces, the Jupiter-like exoplanet orbits its host star at an exceptionally close distance — approximately 12 times closer than Mercury is to the Sun — which heats its atmosphere to a searing 2000°C. Such extreme temperatures have “puffed up” the planet, increasing its volume to nearly six times that of Jupiter.
At such extreme temperatures, mineral- and rock-forming elements, which would otherwise remain hidden in the atmosphere of a colder gas-giant planet, can reveal themselves.
Using ...
Experts have identified coordinated efforts to saturate YouTube’s recommender algorithm, flooding users with pro- Bolsonaro content during the 2022 Brazil election.
Researchers from the University of Exeter and Instituto Vero have uncovered a complex, web-like influencer system of channels that shaped political narratives during this period. This is in addition to YouTube’s own recommender algorithm which also generates suggestions based on users’ viewership patterns.
This network of influencer-driven videos was promoted by mentions, tags, interviews, and cuts (shorter video formats) and heavily contributed ...
Oxidative stress – characterized by elevated levels of unstable molecules called reactive oxygen species– is associated with neurodegeneration and cardiovascular disease. However, until recently it has not been possible to demonstrate a causal relationship between oxidative stress and disease states. A new study used “chemogenetics” to activate a recombinant yeast protein expressed in mouse tissues to manipulate levels of oxidative stress in living mice. Researchers from Brigham and Women’s Hospital, Harvard Medical School, and the Novartis ...
Study shows improvements in depression and anxiety scores among individuals supplementing with probiotics alongside standard antidepressant medication
Data from a randomised double-blind placebo-controlled pilot trial published today in JAMA Psychiatry
A new study published today (14 June) in JAMA Psychiatry has found evidence that supplementing the diet with a probiotic blend containing 14 strains of bacteria can help individuals who are being treated for major depressive disorder with antidepressants. The research, led by the Institute of Psychiatry, Psychology & Neuroscience (IoPPN) ...