(Press-News.org) All around us, insects are speaking to each other: jockeying for mates, searching for food, and trying to avoid becoming someone else’s next meal. Some of this communication is easy to spot—like the flashes of fireflies on a summer night or a screaming chorus of cicadas in the afternoon—but many of the most sophisticated conversations are challenging to observe, occurring through an exchange of chemical scents.
Understanding chemical communication could be the key to finding new, more effective ways to protect crops or ward off biting insects that can transmit diseases. Researchers at SRI International, in collaboration with scientists at Virginia Tech and Rutgers University, have devised a method for identifying sections of genetic code that make the chemicals that insects use to communicate. Their work, published recently in Protein Science, provides a roadmap for understanding how chemical communication evolved and is the first step in deciphering what specific insects are saying.
“Pest control is a longer-term goal here, particularly in agriculture,” said Paul O’Maille, the program director of biocomplexity sciences at SRI and corresponding author on the paper. “We need to decode this language, be able to intercept it, and maybe redirect it in intelligent ways.”
Insects communicate with a class of chemicals called terpenes, which vaporize easily and spread through the air, covering a large area and potentially reaching lots of other insects. But until recently, researchers thought that insects weren’t able to produce them on their own. It was generally assumed that insects acquired terpenes from their environment, collecting them from food they ate or hosting microbes that could produce them.
“Just in the last handful of years, my collaborators and others discovered that insects actually have genes to encode for enzymes called terpene synthases, and that is the mouthpiece of this communication form,” O’Maille said. Terpene synthases are what allow a species to create their own terpenes. “That opened up a new world for us.”
With the realization that some insects had the ability to create terpenes written into their genetic code, the researchers set out to devise a method of finding similar genes in other species. O’Maille, who has been studying terpenes in plants for a couple decades, was able to break down the chemistry needed to make a terpene and determine which genes would have to be tweaked to make that happen. He identified several motifs—patterns in the genetic code—that are specific to terpene synthases.
“We’ve basically put together a ruleset for understanding the natural history of how these terpene synthases came to be, and that leads to a heuristic, or a method, to predict whether a gene is a terpene synthase or not,” O’Maille said. “Using that heuristic, we see that there are loads of these terpene synthase genes across different insects—they’re quite prevalent.”
The researchers have already identified several hundred potential terpene synthase genes by applying their method to available genetic sequences of insects. The species they’ve looked at represent only eight of the 29 insect orders so far, but their data indicates that terpene-based chemical communication evolved independently multiple times.
By providing this blueprint, the researchers hope to help fellow scientists verify the identity of terpene synthases in many more insects and start the process of understanding how those terpenes are being used. And once we speak the language, we can try to use it our advantage. If we know, for example, which chemicals are attractive to insects that prey on important crops, we might be able to sow clusters of decoy plants that produce those chemicals and draw insects away.
“Our ability to decode that conversation gives us more options,” O’Maille said.
O’Maille also highlights that the methods used in this paper can be applied to more than just insects. The same techniques O’Maille and his colleagues used to predict which sections of the genome codes for terpene synthases could be applied to other enzymes in other species.
“Right now, we can sequence genomes at-will, but we can’t interpret the genome very well,” O’Maille said. “Our work provides a roadmap for developing heuristics for other classes of enzymes to have more accurate predictions of the functions of genes.”
END
SRI seeks to learn how insects speak through smells
Understanding chemical communication among insects could help find new ways to protect crops or ward off biting insects that can transmit diseases.
2023-06-20
ELSE PRESS RELEASES FROM THIS DATE:
Cuttlefish brain atlas first of its kind
2023-06-20
NEW YORK, NY — Anything with three hearts, blue blood and skin that can change colors like a display in Times Square is likely to turn heads. Meet Sepia bandensis, known more descriptively as the camouflaging dwarf cuttlefish. Over the past three years, a team led by neuroscientists at Columbia’s Zuckerman that includes data experts and web designers has put together a brain atlas of this captivating cephalopod: a neuroanatomical roadmap depicting for the first time the brain’s overall 32-lobed structure as well its cellular organization.
The ...
Climate action plans mobilize limited urban change, researchers report
2023-06-20
The Intergovernmental Panel on Climate Change Fifth Assessment Report (AR5), released just prior to an international climate convention in 2015, explicitly stated that human-caused greenhouse gas emissions were the highest in history, with clear and widespread impacts on the climate system. Since then, hundreds of cities across the world have published their own climate action plans (CAPs), detailing how their urban areas will handle climate change. How do the plans stack up against one another and against the recommended ...
Photon-counting CT noninvasively detects heart disease in high-risk patients
2023-06-20
OAK BROOK, Ill. – New ultra-high-resolution CT technology enables excellent image quality and accurate diagnosis of coronary artery disease in high-risk patients, a potentially significant benefit for people previously ineligible for noninvasive screening, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA).
Coronary artery disease is the most common form of heart disease. Coronary CT angiography (CCTA) is highly effective for ruling out coronary artery disease ...
Self-driving revolution hampered by a lack of accurate simulations of human behavior
2023-06-20
Self-driving revolution hampered by a lack of accurate simulations of human behaviour
Algorithms that accurately reflect the behaviour of road users - vital for the safe roll out of driverless vehicles - are still not available, warn scientists.
They say there is “formidable complexity” in developing software that can predict the way people behave and interact on the roads, be they pedestrians, motorists or bike riders.
To improve the modelling, a research team led by Professor Gustav Markkula from the Institute of Transport Studies ...
Toxic emissions from wildland-urban interface fires
2023-06-20
Fires in the wildland-urban interface (WUI) emit more toxic smoke than wildfires burning in natural vegetation, due to the chemicals in the structures, vehicles, and other manufactured goods that burn in fires in areas of human habitation. Amara Holder and colleagues surveyed the literature on emissions from urban fuels, finding 28 experimental studies that reported emission factors—emissions per unit of fuel burned—for various items, such as home furnishings, consumer electronics, and vehicle ...
Electing progressives with patriotism, family, and tradition
2023-06-20
Economically progressive candidates may fare better in US elections when delivering their message in terms of “binding values” such as patriotism, family, and respect for tradition, according to a study. Although large majorities of Americans favor increasing economic equality in the United States, candidates who promote policies intended to reduce economic inequality, such as raising the minimum wage or increasing access to health care, often fare poorly at the ballot box. One reason for their under-performance may ...
Locating executive functions in fish brains
2023-06-20
The telencephalon is the part of the brain responsible for executive functions in fish, according to an experimental study. Zegni Triki and colleagues used guppies (Poecilia reticulata) that had been selected over five generations to have smaller or larger telencephalons, resulting in a 10% size difference between “up selected” and “down selected” lines of fish. Total brain size was not significantly affected. The authors then presented 48 male fifth-generation fish from both lines with tests of cognitive flexibility, inhibitory control, and working memory—the three commonly accepted components ...
Modeling human behavior for autonomous vehicles
2023-06-20
A model of human psychology could help self-driving cars interact with human drivers on the road, according to a study. Gustav Markkula and colleagues combined several computational psychological models into one master-model to simulate pedestrians attempting to cross a busy road and the human drivers on that road. The goal of the model was to capture the underlying cognitive mechanisms responsible for observed behavior. Computational models of Bayesian perception, theory of mind, behavioral game theory, long-term valuation of ...
Cholesterol lures in coronavirus
2023-06-20
A recent study unveiled the doorway that SARS-CoV2 uses to slip inside cells undetected.
SARS-CoV-2 uses the receptor angiotensin-converting enzyme 2, or ACE2, to infect human cells. However, this receptor alone does not paint a complete picture of how the virus enters cells. ACE2 is like a doorknob; when SARS-CoV-2 grabs it and maneuvers it precisely, this allows the virus to open a doorway to the cell’s interworking and step inside. However, the identity of the door eluded scientists.
Scott Hansen, an associate ...
2023 Warren Alpert Foundation Prize honors pioneer in computational biology
2023-06-20
The 2023 Warren Alpert Foundation Prize has been awarded to scientist David J. Lipman for his visionary work in the conception, design, and implementation of computational tools, databases, and infrastructure that transformed the way biological information is analyzed and accessed freely and rapidly around the world.
The $500,000 award is bestowed by The Warren Alpert Foundation in recognition of work that has improved the understanding, prevention, treatment, or cure of human disease. The prize is administered by Harvard Medical School.
Lipman will be honored at a scientific symposium on Oct. 11, 2023, hosted by HMS. For further information, visit ...
LAST 30 PRESS RELEASES:
Mountain lions coexist with outdoor recreationists by taking the night shift
Students who use dating apps take more risks with their sexual health
Breakthrough idea for CCU technology commercialization from 'carbon cycle of the earth'
Keck Hospital of USC earns an ‘A’ Hospital Safety Grade from The Leapfrog Group
Depression research pioneer Dr. Philip Gold maps disease's full-body impact
Rapid growth of global wildland-urban interface associated with wildfire risk, study shows
Generation of rat offspring from ovarian oocytes by Cross-species transplantation
Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness
Compound metalens achieves distortion-free imaging with wide field of view
Age on the molecular level: showing changes through proteins
Label distribution similarity-based noise correction for crowdsourcing
The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050
Diabetes medication may be effective in helping people drink less alcohol
US over 40s could live extra 5 years if they were all as active as top 25% of population
Limit hospital emissions by using short AI prompts - study
UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research
Fayetteville police positive about partnership with social workers
Optical biosensor rapidly detects monkeypox virus
New drug targets for Alzheimer’s identified from cerebrospinal fluid
Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment
Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H
Firefighters exposed to chemicals linked with breast cancer
Addressing the rural mental health crisis via telehealth
Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis
Researchers shed light on skin tone bias in breast cancer imaging
Study finds humidity diminishes daytime cooling gains in urban green spaces
Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards
AI tool ‘sees’ cancer gene signatures in biopsy images
Answer ALS releases world's largest ALS patient-based iPSC and bio data repository
2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller
[Press-News.org] SRI seeks to learn how insects speak through smellsUnderstanding chemical communication among insects could help find new ways to protect crops or ward off biting insects that can transmit diseases.