(Press-News.org) New insights explaining why some children have a longer remission than others after having cutting-edge CAR T-cell therapy for leukaemia have been revealed by researchers at UCL, Great Ormond Street Hospital, and the Wellcome Sanger Institute.
The collaborative research project, published today in Nature Medicine, combines expertise in novel immune therapy design and state-of-the-art computational analysis to identify a genetic signature of CAR T-cells that will be the most effective in the long term.
In recent years, CAR T-cells – genetically engineered T-cells (a type of immune cell) designed to target leukaemia – have become an established treatment option for children with a relapsed or incurable rare form leukaemia (B-cell acute lymphoblastic or B ALL).
One of the key factors that determines whether the treatment will lead to a long-lasting remission of the leukaemia – allowing children to live cancer free – is how long the CAR T-cells last in the body. Until now, little has been known about what makes these cells last in the body and, therefore, whether the treatment is likely to work long-term without further therapy.
A collaborative research team from across Great Ormond Street Hospital (GOSH), the Wellcome Sanger Institute and the UCL Great Ormond Street Institute of Child Health (UCL GOS ICH) worked with families for years after their CAR T-cell treatment (called AUTO1,) as part of the CARPALL study, to begin to build a picture of why some CAR T-cells stay in the body long-term.
This work provides the first stepping-stone in understanding why some CAR T-cells persist. The team aims to build on the signature discovered in this project to identify key markers in cell populations and ultimately understand if there is a way to spot, or even create CAR T-cells that will persist long-term before treatment begins.
Dr Nathaniel Anderson, lead author and Marie Sklodowska-Curie Fellow at the Wellcome Sanger Institute, said: “Through cutting-edge single cell genomics, we have, for the first time, been able to crack the code of persistence in CAR T-cells in children with great clarity.
“We hope that our research will provide the first clue as to why some CAR T-cells last for a long time – which we know is vital for keeping children cancer-free after treatment. Ultimately, this work will help us to continue to improve this already life-changing treatment.”
The hope is that this knowledge will eventually enable clinical teams delivering CAR T-cell therapies to better understand which patients will best respond to treatments and enable manufacturers to optimise their methods to support persistence – leading to better outcomes for patients.
Dr Sara Ghorashian, co-senior author, Consultant in Paediatric Haematology at GOSH and Honorary Senior Clinical Lecturer at the UCL GOS ICH, said: “This data for the first time shows us the characteristics of long-lasting CAR T-cells which are responsible not just for curing children with ALL in our study but also seen in adults treated with a different CAR T-cell product for a different type of leukaemia. As such, this provides us with confidence that the signature may unlock mechanisms of CAR T-cell persistence more generally and allow us to develop better treatments.
“We are indebted to all of the children and families who make research like ours possible – it is only through their dedication that we are able to build our understanding of these new therapies and build better treatments for children across the world.”
Studying CAR T-cells in depth
The team were able to study cells from 10 children who were enrolled in a pioneering clinical trial (CARPALL trial), for up to five years after their original CAR T-cell treatment. This has provided them with a new understanding as to why some of these CAR T-cells stay around in a patient’s bloodstream, and why others vanish early – which can in some cases allow the cancer to return.
Using techniques that analyse individual cells at a genetic level to understand what they do, the scientists were able to identify a unique “signature” in long-lasting CAR T-cells. The signature suggested that long-lasting CAR T-cells in the blood transform into a different state that enables them to continue policing the patient’s body for cancer cells.
Vitally, this signature was seen across cells and patients as well as in adults treated with a different CAR T-cell product for a different type of leukaemia. But it was not identified in other types of immune cells. This suggested that the signature the authors identified may not only be a marker of these long-lasting cells but could actually be what makes them persist in the body and allows for a longer remission in children.
As part of the study, the researchers identified the key genes in CAR T-cells that appeared to enable them to persist in the body for a long time. Importantly these genes will provide a starting point for future studies to identify markers of persistence in CAR T-cell products as they are made and ultimately improve their effectiveness.
Dr Sam Behjati, co-senior author, Group Lead and Wellcome Senior Research Fellow at the Wellcome Sanger Institute and Honorary Consultant Paediatric Oncologist at Addenbrooke’s Hospital, Cambridge, said: “This study is a fantastic step forward in our understanding of CAR T-cell persistence and illustrates the power of collaborative science and combining pioneering clinical research with cutting-edge genomic science. It is crucial that we continue to develop and build on these new treatments to help more children with leukaemia across the world.”
The dedication of research families
Studies such as this are only possible because of the dedication of the children and families who take part in research. For scientists to investigate the long-term persistence of cells, children had to continue to donate cells to the study for up to five years after their initial treatment.
Austin was diagnosed with B ALL at the age of two, by the age of eight he’d been through three relapses and extensive treatment including two bone marrow transplants. By the time of his fourth relapse, he had exhausted all conventional therapy options. In October 2016, Austin received an infusion of CAR T-cells as part of the CARPALL clinical trial.
Over six years later and Austin, now 14, is still cancer free, with long-lasting CAR T-cells detectable in his blood. He is just one of 10 children who have been donating samples to this study since their infusions. His dad Scott said: “It’s not an exaggeration to say that if it wasn’t for research Austin wouldn’t be alive. The research teams at GOSH gave us so much, we wanted to give something back. Taking part in this study not only gives us that opportunity but we also hope that Austin’s data will help other families like ours in the future.
“We actually love coming back to GOSH to see the team and keep them a part of our lives. I feel so proud that Austin has been a part of this research journey.”
This continued commitment to studies is helping researchers to better understand new, cutting-edge therapies and improve them for future families.
Dr Henry Stennett, Research Information Manager at Cancer Research UK, who part-funded the study, said: “We know that immunotherapies such as CAR T-cell therapy have seen some great success over the years, but they don’t work in all patients, and we need to continue to work to figure out why. Studies like this one are vital for bringing us closer to making immunotherapies more effective for more cancer patients.”
Supporting information
This research was supported by a CRUK/AIRC Accelerator Award Scheme for the INCAR consortium. Wellcome provided institutional and personal (SB) funding support. Marie Sklodowska-Curie Actions supported NA. The Olivia Hodson Cancer Fund also supported this work.
The original CARPALL study was funded by Children with Cancer, GOSH Children’s Charity and JP Moulton Trust. Support was also provided by the National Institute for Health and Care Research Biomedical Research Centres at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London Hospital, King’s Health Partners, Great Ormond Street Hospital and University College London Hospital.
---ends---
END
Unlocking the mystery of long-lasting cancer treatment
2023-07-06
ELSE PRESS RELEASES FROM THIS DATE:
Astronomers identify the earliest strands of the cosmic web
2023-07-06
Using NASA's James Webb Space Telescope, a team of scientists led by University of Arizona astronomers has discovered a threadlike arrangement of 10 galaxies that existed just 830 million years after the Big Bang.
Lined up like pearls on an invisible string, the 3-million-light-year-long structure is anchored by a luminous quasar – a galaxy with an active, supermassive black hole at its core. The team believes the filament will eventually evolve into a massive cluster of galaxies, much like the well-known Coma Cluster in the "nearby" universe. The results are published in two papers in The Astrophysical Journal ...
Professor spreads the gospel of ‘good fire’ through eco-cultural lens
2023-07-06
LAWRENCE – A pyromaniac is someone unhealthily obsessed with the destructive power of fire. Melinda Adams instead is pulled toward the term pyromantic – a lover of “good fire” for the benefits it can bring to people, communities and the environment as a whole.
The Langston Hughes Assistant Professor in Indigenous Studies and Geography & Atmospheric Science at the University of Kansas, Adams extols the benefits of cultural or ceremonial fire in a new paper she has co-authored ...
Transformation of immunosuppressive mtKRAS tumors into immunostimulatory tumors by Nerofe and Doxorubicin
2023-07-05
“[...] we demonstrated that the combination of Nerofe and DOX exerts a synergistic effect during mCRC treatment [...]”
BUFFALO, NY- July 5, 2023 – A new research paper was published in Oncotarget's Volume 14 on July 1, 2023, entitled, “Transformation of immunosuppressive mtKRAS tumors into immunostimulatory tumors by Nerofe and Doxorubicin.”
Members of the rat sarcoma viral oncogene (RAS) subfamily KRAS are frequently mutated oncogenes in human cancers and have been identified ...
Bar-Ilan University study reveals disparity in quality of life among COVID-19 survivors from different ethnic groups
2023-07-05
A new study conducted by researchers at Bar-Ilan University in Israel has shed light on the long-term impact of COVID-19 on the quality of life among different ethnic groups in the country. The study, part of a larger cohort project, highlights a significant discrepancy between Arabs and Druze, and Jews, with the two former groups experiencing a more pronounced decline in quality of life one year after infection.
In this cohort study, researchers regularly followed up with individuals who had been infected with the SARS-CoV-2 virus to assess various aspects of their health. The findings, published in the International ...
Fossils reveal how ancient birds molted their feathers— which could help explain why ancestors of modern birds survived when all the other dinosaurs died
2023-07-05
Every bird you’ve ever seen— every robin, every pigeon, every penguin at the zoo— is a living dinosaur. Birds are the only group of dinosaurs that survived the asteroid-induced mass extinction 66 million years ago. But not all the birds alive at the time made it. Why the ancestors of modern birds lived while so many of their relatives died has been a mystery that paleontologists have been trying to solve for decades. Two new studies point to one possible factor: the differences between how modern birds and their ancient cousins molt their feathers.
Feathers are one of the key traits that all birds share. They're made of a protein called keratin, the same material ...
A novel peptide ‘T14’ reflects age and photo-aging in human skin
2023-07-05
“[...] the results suggest a possible novel approach [for] exploring skin disorders [...]”
BUFFALO, NY- July 5, 2023 – A new research paper was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 12, entitled, “A novel peptide ‘T14’ reflects age and photo-aging in human skin.”
T14 is a 14mer peptide derived from the C-terminus of acetylcholinesterase (AChE). Once cleaved, it is independently bioactive of the parent molecule and enhances calcium influx in different cell types, in a range of scenarios: it binds to an allosteric site selectively ...
Tracking ships’ icy paths amidst climate change
2023-07-05
There has been much buzz about the warming planet’s melting Arctic region opening shipping routes and lengthening travel seasons in ocean passageways that ice once blocked. Expanded fishing, trade and tourism is envisioned.
Operative word: Envisioned.
Scientists at Michigan State University (MSU), University of Waterloo, and University of Alaska Fairbanks report in Climatic Change where vessels are traveling in the ice-covered waters of the Arctic between Alaska and Russia, and what those reports may mean for important wildlife and communities in the region.
“Even with climate change, sea ice is still a substantial barrier to Arctic vessel traffic,” said Kelly Kapsar, ...
Study shines light on why companies use a variety of dark money strategies
2023-07-05
AUSTIN, Texas — As public concerns mount over lack of transparency in political giving, a new study from researchers at The University of Texas at Austin is the first to illuminate how and why corporations choose to legally conceal their lobbying and campaign contributions.
U.S. companies are required to disclose the total amount they spend on political activity, but beyond that, the disclosure is incredibly vague, according to Tim Werner, associate professor of business, government and society at the McCombs ...
Health professions requiring advanced degrees have few Latinos
2023-07-05
WASHINGTON (July 5, 2023)--Although the situation is improving, Latinos and especially Mexican Americans, remain very underrepresented in U.S. health professions that require advanced degrees, according to a study published today in the journal Health Affairs. The study by George Washington University researchers is the first to examine the representation of the four largest Latino populations in the U.S. health workforce and the findings raise concerns about the lack of diversity in the U.S. health workforce.
The study ...
Fluctuating levels of cholesterol and triglycerides linked to increased risk of dementia
2023-07-05
EMBARGOED FOR RELEASE UNTIL 4 P.M. ET, WEDNESDAY, JULY 5, 2023
MINNEAPOLIS – Older people who have fluctuating levels of cholesterol and triglycerides may have a higher risk of Alzheimer’s disease and related dementias compared to people who have steady levels, according to new research published in the July 5, 2023, online issue of Neurology®, the medical journal of the American Academy of Neurology. While the study found a link, it does not prove that fluctuating levels of cholesterol and triglycerides cause dementia.
“Prevention strategies for Alzheimer’s and related dementias are urgently needed,” ...