(Press-News.org) In recent years, cancer researchers have hailed the arrival of chimeric antigen receptor T cell (CAR T) therapy, which has delivered promising results, transforming the fight against various forms of cancer. The process involves modifying patients’ T-cells to target cancer cells, resulting in remarkable success rates for previously intractable forms of cancer.
Six CAR T cell therapies have secured FDA approval, and several more are in the pipeline. However, these therapies come with severe and potentially lethal side effects, namely cytokine release syndrome (CRS) and neurotoxicity. These drawbacks manifest as a range of symptoms—from high fever and vomiting to multiple organ failure and patient death—posing significant challenges to broader clinical application.
Now, a research team led by Michael Mitchell, associate professor in the School of Engineering and Applied Science at the University of Pennsylvania, has found a solution that could help CAR T therapies reach their full potential while minimizing severe side effects. Their findings are published in the journal Nature Materials.
“Addressing CRS and neurotoxicity without compromising the therapeutic effectiveness of CAR T cells has been a complex challenge,” says Mitchell.
He says that unwanted interactions between CAR T and immune cells called macrophages drive the overactivation of macrophages, which in turn result in the release of toxic cytokines that lead to CRS and neurotoxicity.
“Controlling CAR T-macrophage interactions in vivo is difficult,” Mitchell says. “So, our study introduces a materials engineering-based strategy that involves incorporating a sugar molecule onto the surface of CAR T cells. These sugars are then used as a reactive handle to create a biomaterial coating around these cells directly in the body, which acts as a ‘suit of armor,’ preventing dangerous interactions with macrophages.”
First author Ningqiang Gong, a postdoctoral researcher in the Mitchell Lab, elaborates on the technique, “We attached this sugar molecule to the CAR T cells using metabolic labeling. This modification enables the CAR T cells to attack cancer cells without any hindrance.”
“When symptoms of CRS begin to manifest, we introduce another molecule—polyethylene glycol (PEG)—to create the suit of armor, which effectively blocks dangerous interactions between these engineered T cells, macrophages, and the tumor cells themselves,” Gong says.
Over time, small tumor antigens can still reach what the researchers call ‘PEGylated CAR T cells,’ slowly activating and expanding them without triggering the severe side effects associated with rapid activation and expansion. As the CAR T cells slowly expand, the surface density of PEG becomes diluted, progressively restoring their ability to interact with other cells.
The team says that their approach offers more than just a safety net for patients; it also opens up a new “therapeutic window” for treatment. This is made possible, Gong says, due to the size differences among tumor cells, CAR T cells, and macrophages. He says tumor cells and CAR T cells are typically smaller (ranging from 5-10 μm) compared to macrophages (>20 μm), and as the surface density of PEG on CAR T cells begins to dilute, interactions between CAR T cells and tumor cells are restored before interactions with macrophages.
This restoration says Mitchell allows CAR T cells to target and kill cancer cells without causing macrophage overactivation, thereby minimizing the risk of dangerous CRS symptoms and neurotoxic effects.“By incorporating the PEG buffer, we’ve successfully managed to modulate the interactions between CAR T cells and macrophages. This enables a therapy that is both safer and effective,” Mitchell says.
Beyond this, the team is also examining the potential for in situ PEGylation to be applied to other types of cellular immunotherapies and even broader applications. “The implications could be far-reaching,” says Mitchell. “We’re looking at a potentially universal approach to making cellular therapies safer for all patients.”
Michael Mitchell is an associate professor in the Department of Bioengineering in the School of Engineering and Applied Science and the director of the Lipid Nanoparticle Synthesis Core at the Penn Institute for RNA Innovation at the University of Pennsylvania.
Ningqiang Gong is a postdoctoral researcher in the Mitchell Lab at Penn.
This research was supported by the National Institute of Health (Award DP2TR002776), the National Science Foundation (CAREER Award CBET-2145491); the Burroughs Wellcome Fund Career Award at the Scientific Interface, and the American Cancer Society (RSG-22-122-01-ET).
END
A suit of armor for cancer-fighting cells
New research from the University of Pennsylvania offers a safer path for CAR T cell immunotherapy.
2023-09-18
ELSE PRESS RELEASES FROM THIS DATE:
Dana-Farber leads adaptive, efficient multi-arm phase 2 clinical trial for glioblastoma
2023-09-18
EMBARGOED: September 18, 2023 4PM EST
CONTACT: Nicole Oliverio, nicole_oliverio@dfci.harvard.edu, 617-257-0454
Boston – An innovative phase 2 clinical trial led by Dana-Farber Cancer Institute in collaboration with 10 major brain tumor centers around the country and designed to find new potential treatments for glioblastoma has reported initial results in the Journal of Clinical Oncology. While none of the three therapeutics tested so far improved overall survival of patients, this adaptive platform trial, the first of its kind in neuro-oncology, has the potential to rapidly and efficiently identify therapies that ...
New research highlights importance of equity in education
2023-09-18
A new study looks at the impact of learning environments on the academic success of racialized students. Compared to their peers, these students feel they have less control in their academic environment, less confidence and self-efficacy in their academic abilities, and weaker connections to other students and professors.
The University of Ottawa study underscores that higher education institutions must recognize and address the specific needs of their racialized student communities and create inclusive learning environments that better meet these needs. Failing to do so could affect the overall psychological well-being and academic performance ...
Cell therapy can reduce risk of death from COVID-19 by 60%, study shows
2023-09-18
The use of cell therapy to treat COVID-19 patients can reduce the risk of death from the disease by 60%, according to a systematic review and meta-analysis conducted by researchers at the University of São Paulo (USP) in Brazil, in partnership with colleagues in Germany and the United States.
Their findings are reported in an article published in the journal Frontiers in Immunology.
The review covers 195 clinical trials of advanced cell therapies targeting COVID-19 that were conducted in 30 countries between January 2020 and December 2021, as well as 26 trials with outcomes published by July 2022.
Cell therapy has come into increasingly frequent use in recent years ...
The pace of climate-driven extinction is accelerating, a UArizona-led study shows
2023-09-18
Climate change is causing extinctions at an increasing rate, a new study by the University of Arizona researchers shows. They surveyed populations of the Yarrow's spiny lizard in 18 mountain ranges in southeastern Arizona and analyzed the rate of climate-related extinction over time.
"The magnitude of extinction we found over the past seven years was similar to that seen in other studies that spanned almost 70 years," said John J. Wiens, a professor in the Department of Ecology and Evolutionary Biology at UArizona, ...
Nuclear medicine treatment cures lethal form of ovarian cancer in preclinical setting
2023-09-18
Reston, VA—A new 225Ac-DOTA-based pre-targeted radioimmunotherapy (PRIT) system has been shown to cure a highly lethal form of advanced intraperitoneal ovarian cancer in a preclinical setting with minimal side effects. Targeting the HER2 protein, which is commonly expressed in ovarian cancer, the therapy (anti-HER2 225Ac-PRIT) is a potential treatment for the otherwise incurable disease. This research was published in the September issue of The Journal of Nuclear Medicine.
Epithelial ovarian cancer is the most lethal ovarian cancer and frequently presents as advanced-stage disease, ...
Gene links exercise endurance, cold tolerance, and cellular maintenance in flies
2023-09-18
EMBARGOED FOR RELEASE UNTIL September 18, 2023 at 3:00 PM U.S. Eastern time
As the days get shorter and chillier in the northern hemisphere, those who choose to work out in the mornings might find it harder to get up and running. A new study in PNAS identifies a protein that, when missing, makes exercising in the cold that much harder—that is, at least in fruit flies.
A team from University of Michigan Medical School and Wayne State University School of Medicine discovered the protein in flies, which they named Iditarod after the famous long distance dog sled across Alaska, while studying metabolism and the effect of stress on the body.
They were particularly ...
Eureka baby! Groundbreaking study uncovers origin of ‘conscious awareness’
2023-09-18
Living things act with purpose. But where does purpose come from? How do humans make sense of their relation to the world and realize their ability to effect change? These fundamental questions of agency – acting with purpose – have perplexed some of the greatest minds in history including Sir Isaac Newton, Charles Darwin, Erwin Schrödinger and Niels Bohr.
A Florida Atlantic University study reveals groundbreaking insight into the origins of agency using an unusual and largely untapped source – human babies. Since goal-directed action appears in the first months ...
Study finds human-driven mass extinction is eliminating entire branches of the tree of life
2023-09-18
The passenger pigeon. The Tasmanian tiger. The Baiji, or Yangtze river dolphin. These rank among the best-known recent victims of what many scientists have declared the sixth mass extinction, as human actions are wiping out vertebrate animal species hundreds of times faster than they would otherwise disappear.
Yet, a recent analysis from Stanford University and the National Autonomous University of Mexico, published this week in the Proceedings of the National Academy of Sciences, shows the crisis may run even deeper. Each of the three species above was also the ...
An implantable device could enable injection-free control of diabetes
2023-09-18
CAMBRIDGE, MA -- One promising approach to treating Type 1 diabetes is implanting pancreatic islet cells that can produce insulin when needed, which can free patients from giving themselves frequent insulin injections. However, one major obstacle to this approach is that once the cells are implanted, they eventually run out of oxygen and stop producing insulin.
To overcome that hurdle, MIT engineers have designed a new implantable device that not only carries hundreds of thousands of insulin-producing islet cells, but also has its own on-board oxygen factory, which generates oxygen by splitting water vapor found in the body.
The researchers showed that when ...
Buried ancient Roman glass formed substance with modern applications
2023-09-18
Some 2,000 years ago in ancient Rome, glass vessels carrying wine or water, or perhaps an exotic perfumes, tumble from a table in a marketplace, and shatter to pieces on the street. As centuries passed, the fragments were covered by layers of dust and soil and exposed to a continuous cycle of changes in temperature, moisture, and surrounding minerals.
Now these tiny pieces of glass are being uncovered from construction sites and archaeological digs and reveal themselves to be something extraordinary. On their surface is a mosaic of iridescent colors of blue, green and orange, with some displaying shimmering gold-colored ...
LAST 30 PRESS RELEASES:
Scientists unlock secrets behind flowering of the king of fruits
Texas A&M researchers illuminate the mysteries of icy ocean worlds
Prosthetic material could help reduce infections from intravenous catheters
Can the heart heal itself? New study says it can
Microscopic discovery in cancer cells could have a big impact
Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer
Breakthrough new material brings affordable, sustainable future within grasp
How everyday activities inside your home can generate energy
Inequality weakens local governance and public satisfaction, study finds
Uncovering key molecular factors behind malaria’s deadliest strain
UC Davis researchers help decode the cause of aggressive breast cancer in women of color
Researchers discovered replication hubs for human norovirus
SNU researchers develop the world’s most sensitive flexible strain sensor
Tiny, wireless antennas use light to monitor cellular communication
Neutrality has played a pivotal, but under-examined, role in international relations, new research shows
Study reveals right whales live 130 years — or more
Researchers reveal how human eyelashes promote water drainage
Pollinators most vulnerable to rising global temperatures are flies, study shows
DFG to fund eight new research units
Modern AI systems have achieved Turing's vision, but not exactly how he hoped
Quantum walk computing unlocks new potential in quantum science and technology
Construction materials and household items are a part of a long-term carbon sink called the “technosphere”
First demonstration of quantum teleportation over busy Internet cables
Disparities and gaps in breast cancer screening for women ages 40 to 49
US tobacco 21 policies and potential mortality reductions by state
AI-driven approach reveals hidden hazards of chemical mixtures in rivers
Older age linked to increased complications after breast reconstruction
ESA and NASA satellites deliver first joint picture of Greenland Ice Sheet melting
Early detection model for pancreatic necrosis improves patient outcomes
Poor vascular health accelerates brain ageing
[Press-News.org] A suit of armor for cancer-fighting cellsNew research from the University of Pennsylvania offers a safer path for CAR T cell immunotherapy.