PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Jellyfish are smarter than you think

Jellyfish are smarter than you think
2023-09-22
(Press-News.org)

Jellyfish are more advanced than once thought. A new study from the University of Copenhagen has demonstrated that Caribbean box jellyfish can learn at a much more complex level than ever imagined – despite only having one thousand nerve cells and no centralized brain. The finding changes our fundamental understanding of the brain and could enlighten us about our own mysterious brains.

After more than 500 million years on Earth, the immense evolutionary success of jellyfish is undeniable. Still, we've always thought of them as simple creatures with very limited learning abilities.

The prevailing opinion is that more advanced nervous systems equate with more advanced learning potential in animals. Jellyfish and their relatives, collectively known as cnidarians, are considered to be the earliest living animals to develop nervous systems and to have fairly simple nervous systems and no centralized brain.

For more than a decade, neurobiologist Anders Garm has been researching box jellyfish, a group of jellyfish commonly known for being among the world's most poisonous creatures. But these lethal jellies are interesting for another reason as well: it turns out that they are not quite as simple as once believed. And this shakes our entire understanding of what simple nervous systems are capable of.

"It was once presumed that jellyfish can only manage the simplest forms of learning, including habituation – i.e., the ability to get used to a certain stimulation, such as a constant sound or constant touch. Now, we see that jellyfish have a much more refined ability to learn, and that they can actually learn from their mistakes. And in doing so, modify their behavior," says Anders Garm, an associate professor at the University of Copenhagen’s Department of Biology.

One of the most advanced attributes of a nervous system is the ability to change behavior as a result of experience – to remember and learn. The research team, headed by Jan Bielecki of Kiel University and Anders Garm, set out to test this ability in box jellyfish. The findings have just been published in the journal Current Biology.

A thousand nerve cells are more capable than once thought

The scientists studied the Caribbean box jellyfish, Tripedalia cystophora, a fingernail-sized medusa that lives in Caribbean mangrove swamps. Here, they use their impressive visual system including 24 eyes to hunt for tiny copepods among mangrove roots. While making for a good hunting grounds, the web of roots is also a dangerous place for soft-bodied jellies.

So, as the small box jellyfish approach the mangrove roots, they turn and swim away. Should they veer too soon, they won’t have enough time to catch any copepods. But if they turn too late, they risk bumping into the root and damaging their gelatinous bodies. Thus, assessing distances is crucial for them. And here, contrast is the key, as the researchers discovered: 

"Our experiments show that contrast, i.e., how dark the root is in relation to the water, is used by the jellyfish to assess distances to roots, which allows them to swim away at just the right moment. Even more interesting is that the relationship between distance and contrast changes on a daily basis due to rainwater, algae and wave action," says Anders Garm, who continues:

"We can see that as each new day of hunting begins, box jellyfish learn from the current contrasts by combining visual impressions and sensations during evasive manoeuvres that fail. So, despite having a mere one thousand nerve cells – our brains have roughly 100 billion – they can connect temporal convergences of various impressions and learn a connection – or what we call associative learning. And they actually learn about as quickly as advanced animals like fruit flies and mice."

The new research results break with previous scientific perceptions of what animals with simple nervous systems are capable of:

"For fundamental neuroscience, this is pretty big news. It provides a new perspective on what can be done with a simple nervous system. This suggests that advanced learning may have been one of the most important evolutionary benefits of the nervous system from the very beginning," says Anders Garm.

Seeking the brain cells where memory is housed 

The research team has also shown where the learning is happening in these box jellyfish. This has given them unique opportunities for how to now study the precise changes that occur in a nerve cell when it is involved in advanced learning.   

"We hope that this can become a supermodel system for looking at cellular processes in the advanced learning of all sorts of animals. We are now in the process of trying to pinpoint exactly which cells are involved in learning and memory formation. Upon doing so, we will be able to go in and look at what structural and physiological changes occur in the cells as learning takes place," says Anders Garm.

If the scientists are able to pinpoint the exact mechanisms in jellyfish involved in learning, the next step will be to find out whether it applies specifically to jellies or if it can be found in all animals.

"Eventually, we will look for the same mechanisms in other animals, to see if this is how memory works in general," says the researcher.

This kind of groundbreaking knowledge could be used for a wealth of purposes, according to Anders Garm:

"Understanding something as enigmatic and immensely complex as the brain is in itself an absolutely amazing thing. But there are unimaginably many useful possibilities. One major problem in the future will undoubtedly be various forms of dementia. I don’t claim that we are finding the cure for dementia, but if we can gain a better understanding of what memory is, which is a central problem in dementia, we may be able to lay a building block to better understand the disease and perhaps counteract it," concludes the researcher.

 

FACT BOX:  ABOUT TRIPEDALIA CYSTOPHORA Box jellyfish are a class of jellyfish known for being among the most poisonous animals in the world. They use their venom to catch fish and large shrimp. Tripedalia cystophora has a somewhat milder venom and feeds on tiny copepods.
  Box jellyfish do not have a centralized brain like most animals. Instead, they have four parallel brain-like structures, with approximately holds a thousand nerve cells in each. A human brain has approximately 100 billion nerve cells.
  Box jellyfish have twenty four eyes distributed among their four brain-like structures. Some of these eyes are image forming, providing box jellyfish with more complex vision than other types of jellyfish.
  To find their way through murky mangroves, four of Tripedalia cystophora's eyes look up through the surface of the water and navigate using the mangrove canopies.
  Tripedalia cystophora is one of the smallest box jellyfish species, with a body of only about one centimeter in diameter. It lives in the Caribbean Sea and Central Indo-Pacific.
  Unlike many jellyfish species, Tripedalia cystophora actually mates as the male captures the female with its tentacles. A female's eggs are then fertilized in their gut system, where they also develop into larvae.  

[FACT BOX:]  HOW THEY DID IT

The researchers replicated mangrove swamp conditions in the laboratory, where box jellyfish were placed in a behavioral arena. Here, the researchers manipulated jellyfish behavior by changing the contrast conditions to see what effect this had on their behavior.

They learned that jellyfish learning takes place through failed evasions. That is, they learn from misinterpreting contrast and bumping into roots. Here they combined the visual impression and mechanical shock they got whenever they bumped into a root – and in doing so, learned when to veer away.

"Our behavioural experiments demonstrate that three to five failed evasive manoeuvres are enough to change the jellyfish's behaviour so that they no longer hit the roots. It is interesting that this is roughly the same repetition rate that a fruit fly or mouse needs to learn," says Anders Garm.

The learning was further verified through electrophysiology and classical conditioning experiments, which also showed where in the jellyfish’s nervous system the learning takes place.

 

[FACT BOX:]  ABOUT THE STUDY

The study was conducted by Jan Bielecki from Kiel University and Anders Garm, Sofie Katrine Dam Nielsen and Gösta Nachman from the Department of Biology, University of Copenhagen.

The study has just been published in the scientific journal Current Biology.

 

VIDEO LINK:

https://video.ku.dk/secret/88818429/e5f680af70640f1fd86e5d54e5e95f1a

END


[Attachments] See images for this press release:
Jellyfish are smarter than you think Jellyfish are smarter than you think 2

ELSE PRESS RELEASES FROM THIS DATE:

Vulnerability of older adults to government impersonation scams

2023-09-22
About The Study: In this study using a behavioral experiment designed to mimic a real-world imposter scam among 644 older adults, a sizable number of older adults engaged without skepticism. The results suggest that many older adults, including those without cognitive impairment, are vulnerable to fraud and scams.  Authors: Lei Yu, Ph.D., of Rush University Medical Center in Chicago, is the corresponding author.  To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/  (doi:10.1001/jamanetworkopen.2023.35319) Editor’s ...

Cardiovascular disease burden, outcomes among American Indian and Alaska native Medicare beneficiaries

2023-09-22
About The Study: The results of this study of 220,000 American Indian and Alaska Native patients with Medicare insurance suggest a significant burden of cardiovascular disease and cardiometabolic risk factors. These findings highlight the critical need for future efforts to prioritize the cardiovascular health of this population.  Authors: Lauren A. Eberly, M.D., M.P.H., of the Indian Health Service in Gallup, New Mexico, is the corresponding author.  To access the embargoed study: Visit ...

Rapid and visual detection of monkey B virus based on recombinase polymerase amplification

2023-09-22
https://www.scienceopen.com/hosted-document?doi=10.15212/ZOONOSES-2023-0031 Announcing a new article publication for Zoonoses journal.  Monkey B virus (BV) infection in humans and other macaque species has a mortality rate of approximately 80%. Because BV infects humans through bites, scratches, and other injuries inflicted by macaques, the simple and rapid diagnosis of BV in field laboratories is of great importance to protect veterinarians, laboratory researchers, and support personnels from the threat of infection. Two recombinase polymerase amplification (RPA) assays with a closed vertical flow (VF) visualization strip (RPA-VF-UL27 and RPA-VF-US6) were developed that target ...

A promising drug candidate for ALS – prolongs lifespan and eases symptoms in rats and mice

2023-09-22
A research group at the University of Helsinki and its partners have found a promising drug candidate for the treatment of amyotrophic lateral sclerosis (ALS). Cerebral dopamine neurotrophic factor CDNF prolongs the lifespan of and alleviates disease symptoms in rats and mice in animal studies. Amyotrophic lateral sclerosis (ALS) is a rapidly progressing fatal neurodegenerative disease that affects the nerve cells in the brain and spinal cord. Specifically, a selective degeneration of motoneurons occurs in the spinal cord, leading to muscle atrophy and paralysis. Most patients with ...

Same genes behind heart muscle disorders in humans and Dobermanns

2023-09-22
Researchers have made a significant finding in determining the genetic background of dilated cardiomyopathy in Dobermanns. This research helps us understand the genetic risk factors related to fatal diseases of the heart muscle and the mechanisms underlying the disease, and offers new tools for their prevention. Researchers from the University of Helsinki and the Folkhälsan Research Center, together with their international partners, have identified the genetic background of dilated cardiomyopathy, a disease that enlarges the heart muscle, in dogs and humans. Based ...

A teamwork to evaluate the influence of the cathode catalyst layer platinum loading on the durability of PEMFC

A teamwork to evaluate the influence of the cathode catalyst layer platinum loading on the durability of PEMFC
2023-09-22
Proton exchange membrane fuel cells (PEMFCs) hold promise as a replacement for fossil fueled engines in heavy-duty vehicles. Reducing the platinum content in catalysts is pivotal for scaling up in such applications. Yet, the degradation patterns of low platinum content catalysts remain poorly understood. A team of scientists conducted experiments to shed light on the degradation mechanisms associated with varying catalyst content, offering valuable insights. Their work is published in the journal Industrial Chemistry & Materials on 11 Aug 2023. In ...

Is there more to palm oil than deforestation?

Is there more to palm oil than deforestation?
2023-09-22
Palm oil is the world's most produced and consumed vegetable oil and everyone knows that its production can damage the environment. But do consumers have the full picture? In fact, replacing palm oil with rapeseed oil would require a four to five-fold increase in the amount of land needed. Research led by the University of Göttingen investigated the attitudes, beliefs and understanding about palm oil of the general public in Germany, and how this links to land use. The researchers show that people find it hard to know the consequences of their buying choices, even when extra information is supplied. The results were published in Sustainable ...

Researchers connect Alzheimer’s-associated genetic variants with brain cell function

Researchers connect Alzheimer’s-associated genetic variants with brain cell function
2023-09-22
CHAPEL HILL, N.C. – Scientists studying Alzheimer’s disease (AD) have identified thousands of genetic variants in the genome in the development of this progressive neurodegenerative disease. These variants are predominantly located in genomic regions that do not code for proteins, making it difficult to understand which variants confer individuals’ risk of AD. Non-coding variants were once thought to be “junk DNA” by scientists. In recent years, these variants have been appreciated for playing crucial roles in controlling gene expression across tissues and cell types. However, linking these non-coding variants to the genes they regulate and effects ...

New research reveals gut microbiota link to colitis: intestinal epithelial axin1 deficiency offers protective effects

New research reveals gut microbiota link to colitis: intestinal epithelial axin1 deficiency offers protective effects
2023-09-22
A groundbreaking study conducted by Jun Sun’s research team at the University of Illinois Chicago has revealed a new and critical role of Axin1 in regulating intestinal epithelial development and microbial homeostasis. The research, published in the journal Engineering, highlights the potential therapeutic strategies for human inflammatory bowel disease (IBD). IBD, a chronic inflammatory disorder affecting the gastrointestinal tract, has been a significant health concern worldwide. The study focused on understanding the role of Axin1, a negative regulator of Wnt/β-catenin ...

Visualizing the current distribution inside fuel cells and achieving stable operation via non-destructive diagnostics using magnetic sensors

2023-09-22
Tsukuba, Japan—Fuel cells are attracting attention as a clean energy source technology because the cells do not produce carbon dioxide and emit only water during power generation. However, two contradictory phenomena can hamper their performance: flooding, wherein water remains inside the fuel cell and interferes with power generation, and dry-out, wherein an excess of water is removed and the polymer membrane, through which hydrogen ions permeate, dries out. To detect such issues, various devices and sensors have been used in analyses based on substantial amounts of data. This research team has been investigating a method for detecting and controlling ...

LAST 30 PRESS RELEASES:

Food fussiness a largely genetic trait from toddlerhood to adolescence

Celebrating a century of scholarship: Isis examines the HSS at 100

Key biomarkers identified for predicting disability progression in multiple sclerosis

Study: AI could lead to inconsistent outcomes in home surveillance

Study: Networks of Beliefs theory integrates internal & external dynamics

Vegans’ intake of protein and essential amino acids is adequate but ultra-processed products are also needed

Major $21 million Australian philanthropic investment to bring future science into disease diagnosis

Innovating alloy production: A single step from ores to sustainable metals

New combination treatment brings hope to patients with advanced bladder cancer

Grants for $3.5M from TARCC fund new Alzheimer’s disease research at UTHealth Houston

UTIA researchers win grant for automation technology for nursery industry

Can captive tigers be part of the effort to save wild populations?

The Ocean Corporation collaborates with UTHealth Houston on Space Medicine Fellowship program

Mysteries of the bizarre ‘pseudogap’ in quantum physics finally untangled

Study: Proteins in tooth enamel offer window into human wellness

New cancer cachexia treatment boosts weight gain and patient activity

Rensselaer researcher receives $3 million grant to explore gut health

Elam named as a Fellow of the Electrochemical Society

Study reveals gaps in access to long-term contraceptive supplies

Shining a light on the roots of plant “intelligence”

Scientists identify a unique combination of bacterial strains that could treat antibiotic-resistant gut infections

Pushing kidney-stone fragments reduces stones’ recurrence

Sweet success: genomic insights into the wax apple's flavor and fertility

New study charts how Earth’s global temperature has drastically changed over the past 485 million years, driven by carbon dioxide

Scientists say we have enough evidence to agree global action on microplastics

485 million-year temperature record of Earth reveals Phanerozoic climate variability

Atmospheric blocking slows ocean-driven glacier melt in Greenland

Study: Over nearly half a billion years, Earth’s global temperature has changed drastically, driven by carbon dioxide

Clinical trial could move the needle in traumatic brain injury

AI model can reveal the structures of crystalline materials

[Press-News.org] Jellyfish are smarter than you think