PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

UC Santa Barbara researchers can now visualize osmotic pressure in living tissue

Researchers have developed tools to gauge the pressure and flow of fluid between cells

UC Santa Barbara researchers can now visualize osmotic pressure in living tissue
2023-11-03
(Press-News.org) In order to survive, organisms must control the pressure inside them, from the single-cell level to tissues and organs. Measuring these pressures in living cells and tissues in physiological conditions is a challenge.

In research that has its origin at UC Santa Barbara, scientists now at the Cluster of Excellence Physics of Life (PoL) at the Technical University in Dresden (TU Dresden), Germany, report in the journal Nature Communications a new technique to ‘visualize’ these pressures as organisms develop. These measurements can help understand how cells and tissues survive under pressure, and reveal how problems in regulating pressures lead to disease.

When molecules dissolved in water are separated into different compartments, water has the tendency to flow from one compartment to another to equilibrate their concentrations, a process known as osmosis. If some molecules cannot cross the membrane that separates them, a pressure imbalance — osmotic pressure — builds up between compartments. This principle is the basis for many technical applications, such as the desalination of seawater or the development of moisturizing creams. It turns out that maintaining a healthy functioning organism makes the list, too.

Our cells are constantly moving molecules in and out to prevent the pressure build-up from crushing them. To do so, they use molecular pumps that allow them to keep the pressure in check. This osmotic pressure affects many aspects of cells’ lives and even sets their size.

When cells team up to build our tissues and organs, they, too, face a pressure problem: Our vascular system, or organs such as the pancreas or liver, contain fluid-filled cavities known as lumens that are essential for their function. If cells fail to control osmotic pressure, these lumens may collapse or explode, with potentially catastrophic consequences for the organ. To understand how cells regulate pressure in these tissues, or how they fail to do so in disease, it is essential to measure and ‘see’ the osmotic pressure in live tissues. But unfortunately, this was not possible.

Until now.

Led by former UCSB professor Otger Campàs, who now holds the Chair of Tissue Dynamics at TU Dresden and is currently the managing director of PoL, the scientists devised a novel technique to measure the osmotic pressure in living cells and tissues by using special droplets known as double emulsions. For this pressure sensor, they introduced a water droplet into an oil droplet that permits water to flow through. When these “double-droplets” were exposed to salt solutions of different concentrations, water flowed in and out of the internal water droplet, changing its volume, until pressures were equilibrated. The researchers showed that the osmotic pressure can be measured by simply checking the droplet size. They then introduced these double-droplets into living cells and tissues using glass microcapillaries to reveal their osmotic pressure.

“It turns out that cells in animal tissues have the same osmotic pressure as plant cells but, unlike plants, they must balance it constantly with their environment to avoid exploding, since they do not have rigid cell walls,” Campàs said.

With this simple concept, this ingenious method now allows scientists to “see” osmotic pressure in a wide range of settings. “We know that several physical processes affect the working of our bodies,” Campàs said. “ In particular, osmotic pressure is known to play a fundamental role in the building of organs during embryogenesis, and also in the maintenance of healthy adult organs. With this new technique, we now can study how osmotic pressure impacts all these processes directly in living tissues.”

Beyond offering insights into the biological processes and physical principles that govern life, this method holds promising industrial and medical applications, including monitoring skin hydration, characterization of creams or foods, and diagnosis of diseases known to have osmotic pressure imbalances, such as cardiovascular diseases or tumors. The patent for this technique is currently being issued by UC Santa Barbara, where Campàs performed his research before joining TU Dresden.

 Campàs’s lab previously developed unique techniques to measure the tiny forces that cells create inside tissues and also additional physical properties using minuscule single droplets. Antoine Vian, the lead author of the work and an expert in microfluidics, the technology that enables the generation of double-emulsion droplets, emphasized their key role.

“Double-emulsions are very versatile, with many different applications in science and technology,” he said. “Single droplets can be deformed, but are incompressible and do not allow pressure measurements. In contrast, double emulsion droplets can change size and be used as osmotic pressure sensors. Their use in living systems will surely enable new and exciting discoveries.”

END

[Attachments] See images for this press release:
UC Santa Barbara researchers can now visualize osmotic pressure in living tissue

ELSE PRESS RELEASES FROM THIS DATE:

A project that could touch all corners of Texas

A project that could touch all corners of Texas
2023-11-03
Texas is a huge state. And with that size comes soil diversity, supply chain delays, climate differences, material and labor costs and many other things to consider when evaluating the budget for a highway project. To account for all of these variables, a University of Texas at Arlington researcher is building a price estimation and visualization tool for the Texas Department of Transportation (TxDOT) through a $200,000 U.S. Department of Transportation grant. Mohsen Shandashti, associate professor in the Department of Civil Engineering, is leading a team to develop that tool, which ...

Aston University 3D printing engineer wins Female Innovator of 2023 award

Aston University 3D printing engineer wins Female Innovator of 2023 award
2023-11-03
Renia Gkountiou won the title of Female Innovator for 2023 She was nominated for her role in helping SMEs use and develop 3D printing She is based at the Advanced Prototyping Facility which increases businesses’ awareness of 3D printing opportunities.   An Aston University engineer has been recognised at the 2023 Innovation Awards. Renia Gkountiou who is as an engineer and technician within the University’s Advanced Prototyping Facility project won the title of Female Innovator for 2023. She was nominated by professionals in her field for her role helping small to medium size businesses use ...

Aston University celebrates official opening of new city center HQ and launch of 2030 strategy

Aston University celebrates official opening of new city center HQ and launch of 2030 strategy
2023-11-03
The reception at John Cadbury House brought together more than 70 business leaders and other senior figures from across the city and region The Mayor of the West Midlands, Andy Street, was guest speaker at the event Professor Aleks Subic shared the University’s vision and ambitions for the future. Aston University celebrated the official opening of its new Birmingham city centre headquarters and the launch of its 2030 strategy at a reception at John Cadbury House on Thursday 2 November.  The event, hosted by the University’s Vice-Chancellor and Chief Executive, Professor Aleks Subic, brought together more ...

Mother Nature knows best when it comes to climate solutions, social media users say

Mother Nature knows best when it comes to climate solutions, social media users say
2023-11-03
People feel more positive about planting trees and protecting rainforests as a means of combating climate change than they do about employing technological solutions, according to a new research paper in Global Environmental Change. A survey of more than a million social media posts suggests that people feel more positive about Nature's ability to solve climate change than human technology, according to new research published in the journal Global Environmental Change. Researchers analysing 1.5 million posts on X (formerly Twitter) using the latest artificial intelligence-driven language models found expressions of “disgust” ...

Texas A&M physicists play key role in milestone moment toward development of nuclear clock

Texas A&M physicists play key role in milestone moment toward development of nuclear clock
2023-11-03
An international research team involving Dr. Olga Kocharovskaya , a distinguished professor in the Department of Physics and Astronomy at Texas A&M University, has taken a major step toward development of a new generation of atomic clocks with mind-blowing potential affecting fundamental science and various industries, from nuclear physics to satellite navigation and telecommunications. The team’s work, led by Argonne National Laboratory senior physicist Dr. Yuri Shvyd'ko, for the first time resonantly excited the scandium-45 nuclear isomer with the world's brightest X-ray pulses at the European XFEl (EuXFEL) X-ray ...

Wake Forest Institute for Regenerative Medicine (WFIRM) secures National Science Foundation (NSF) grant renewal for summer undergraduate research program

Wake Forest Institute for Regenerative Medicine (WFIRM) secures National Science Foundation (NSF) grant renewal for summer undergraduate research program
2023-11-03
WINSTON-SALEM, NC – November 3, 2023 - The Wake Forest Institute for Regenerative Medicine (WFIRM) is thrilled to announce the successful renewal of its Research Experiences for Undergraduates (REU) Site grant from the National Science Foundation (NSF). The grant, titled "Enabling Technologies and New REU Approaches to Engineer Complex Tissues" will continue to offer diverse cohorts of undergraduate students unique research, education, and professional development opportunities in the multidisciplinary field of regenerative medicine (RM) over ...

U of M Medical School research team finds novel drug improves outcomes for patients with rare kidney disorder

2023-11-03
MINNEAPOLIS/ST. PAUL (11/03/2023) — Focal segmental glomerulosclerosis (FSGS) is a rare kidney disorder that affects children and adults, and can lead to kidney failure. New findings from a team led by the University of Minnesota Medical School show patients with FSGS who were treated with the medication sparsentan experienced improved kidney function—making it a potential new treatment option for the disorder. The research, published today in the New England Journal of Medicine, suggests sparsentan may provide kidney protection by significantly reducing excess protein in urine — known as proteinuria, a proven indicator of kidney damage.  “FSGS ...

Opioid disorder treatment: first three weeks forecast success

2023-11-03
NEW YORK, NY--A newly developed prediction model may be able to calculate the risk of opioid relapse among individuals in the early stages of medication treatment—as early as three weeks into therapy.  “Medication treatment for opioid use disorder, contrary to popular belief, is very effective and likely to succeed if patients achieve early treatment success,” says Sean X. Luo, MD, PhD, assistant professor of psychiatry at Columbia University Vagelos College of Physicians and Surgeons, who ...

Study links childhood trauma to COVID-19 deaths, hospitalizations

2023-11-03
People who endured childhood adversity, like abuse or neglect, were more likely to be hospitalized or die from COVID-19 in adulthood, a new University of Pittsburgh study found. Specifically, higher self-reported childhood adversity was linked to 12-25% higher odds of COVID-19 hospitalization and mortality. While age, sex, ethnicity, health, and sociodemographic factors have been related to such outcomes throughout the pandemic, this was the first study finding a link between these COVID-19  outcomes ...

America’s low-carbon transition could improve employment opportunities for all

2023-11-03
The USA is likely to see consistent job growth from the transition to net zero, but the gains will be unevenly distributed, shows a new analysis. The analysis, conducted by Imperial College London researchers and published today in Nature Climate Change, shows that some states will need new policies to ensure a ‘just’ transition. The USA, alongside many countries, is planning for a low-carbon future, where energy production releases little to no carbon dioxide and what is released is removed from the atmosphere, creating net-zero carbon emissions. This has been backed by new policies, including the 2022 Inflation Reduction Act, which includes large investment ...

LAST 30 PRESS RELEASES:

‘Teen-friendly’ mindfulness therapy aims to help combat depression among teenagers

Innovative risk score accurately calculates which kidney transplant candidates are also at risk for heart attack or stroke, new study finds

Kidney outcomes in transthyretin amyloid cardiomyopathy

Partial cardiac denervation to prevent postoperative atrial fibrillation after coronary artery bypass grafting

Finerenone in women and men with heart failure with mildly reduced or preserved ejection fraction

Finerenone, serum potassium, and clinical outcomes in heart failure with mildly reduced or preserved ejection fraction

Hormone therapy reshapes the skeleton in transgender individuals who previously blocked puberty

Evaluating performance and agreement of coronary heart disease polygenic risk scores

Heart failure in zero gravity— external constraint and cardiac hemodynamics

Amid record year for dengue infections, new study finds climate change responsible for 19% of today’s rising dengue burden

New study finds air pollution increases inflammation primarily in patients with heart disease

AI finds undiagnosed liver disease in early stages

The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski

Excessive screen time linked to early puberty and accelerated bone growth

First nationwide study discovers link between delayed puberty in boys and increased hospital visits

Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?

New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness

Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress

Mass General Brigham researchers find too much sitting hurts the heart

New study shows how salmonella tricks gut defenses to cause infection

Study challenges assumptions about how tuberculosis bacteria grow

NASA Goddard Lidar team receives Center Innovation Award for Advancements

Can AI improve plant-based meats?

How microbes create the most toxic form of mercury

‘Walk this Way’: FSU researchers’ model explains how ants create trails to multiple food sources

A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings

Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania

Researchers uncover Achilles heel of antibiotic-resistant bacteria

Scientists uncover earliest evidence of fire use to manage Tasmanian landscape

Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire

[Press-News.org] UC Santa Barbara researchers can now visualize osmotic pressure in living tissue
Researchers have developed tools to gauge the pressure and flow of fluid between cells