(Press-News.org) International research led by the Department of Medicine and Life Sciences (MELIS) at Pompeu Fabra University, in collaboration with Hospital del Mar, Hospital Clínic, Charité - Medical University of Berlin, and the universities of Oslo and Genoa, has developed a computational biology tool, based on multi-level network analysis, to achieve an integrated vision of multiple sclerosis. This tool could be used to study other complex diseases such as types of dementia.
Multiple sclerosis is an autoimmune disease of unknown cause that occurs when the immune system attacks the brain and spinal cord. It is a complex disease that is not always easy to diagnose and covers a wide range of biological scales, ranging from genes and proteins to cells and tissues, passing through the entire organism.
Symptoms of multiple sclerosis vary among patients, but the most common range from vision problems, asthenia, difficulty walking and keeping balance, to numbness or weakness in the arms and legs. All of them can appear and disappear or last over time.
The study published today in the journal Plos Computational Biology has conducted a multi-level network analysis of multiomic data (genomic, phosphoproteomic and cytomic), brain and retinal images and clinical data of 328 patients with multiple sclerosis and 90 healthy subjects. It is one of the first studies to date that simultaneously analyses data from very different scales, covering everything from genes to the whole organism. Thus, the new tool allows us to understand the complexity of chronic diseases.
“In this study we have analysed five levels at once: genes, proteins, cells, parts of the brain and behaviour. The proximity of the elements of each level in each person has determined the connection between the elements within each level and between levels and, through Boolean dynamics, considering each element as being active or inactive, and the introduction of disturbances in the system, we have made the elements of the network oscillate. Thus, we have managed to identify which elements of the different levels are related at the biological level”, says Jordi Garcia-Ojalvo, professor of Systems Biology and director of the Dynamical Systems Biology Laboratory at the UPF Department of Medicine and Life Sciences.
“In complex diseases, as in society, many things happen at once, and they do so on multiple scales and over time. So, for human beings, researchers and physicians, it is hard to visualize it if it is not by using these types of tools that allow us to discern and identify the related elements”, says Pablo Villoslada, an associate professor at the UPF Department of Medicine and Life Sciences, director of the Neurosciences programme of the Hospital del Mar Research Institute and head of the Neurology Service at Hospital del Mar, who co-led the study together with Garcia-Ojalvo.
Thanks to the enormous capacity of networks to simplify complex data, they have managed to reveal the correlation between the protein MK03, previously associated with multiple sclerosis, with the total count of T cells, immune system cells that help fight infections, the thickness of the layer of retinal nerve fibres and the timed gait test, which measures the time it takes a patient to walk 7.5 metres as quickly as possible.
Although the size of the study has not allowed validating the use of this correlation as a biomarker to diagnose and possibly treat multiple sclerosis, it has allowed an integrated view of this complex system and revealed the relationship between four biological scales: proteins, cells, tissues and behaviour.
“In complex diseases it is very difficult to have genetic biomarkers. They are often determined by multiple genes and there is a lot of “background noise”. And here we are studying sets of genes, proteins, and phenotypes, and if they are related to each other, we have an indication of the existence of the disease”, Garcia-Ojalvo adds.
“With multiple sclerosis we have to build a puzzle whose aspect we can more or less intuit. We are not totally in the dark, which is why we use systems biology, which informs us of the relevant relationships between the elements so that the puzzle is coherent, fits and we learn. And once we know how the disease works, we can find out how to deal with it”, Villoslada concludes.
This tool based on the relationship between basic biology and applied medicine could be applied to the study of other complex diseases such as Alzheimer’s and other types of dementia.
– END –
END
Young children in India who suffer from life-threatening diarrhea frequently are given ineffective treatments because health providers misperceive the wishes of a child’s caregiver, according to a novel new study.
Using actors posing as child caregivers to examine the behavior of health providers in two divergent regions in India, researchers found that the perceived preferences of a child’s caregiver was a more important factor in the way a child was treated than the views of the health care provider about the best course of action.
The ...
Researchers from The Australian National University (ANU) have discovered a previously unknown ability of a group of immune system cells, known as Atypical B cells (ABCs), to fight infectious diseases such as malaria.
The discovery provides new insight into how the immune system fights infections and brings scientists a step closer to harnessing the body’s natural defences to combat malaria.
The scientists say ABCs could also be key to developing new treatments for chronic autoimmune conditions such as lupus.
According to the researchers, ABCs have long been associated with malaria, ...
Regular erections could be important for maintaining erectile function, according to a new study on mice published in Science by researchers at Karolinska Institutet. “We discovered that an increased frequency of erections leads to more fibroblasts that enable erection and vice versa, that a decreased frequency results in fewer of these cells,” says principal investigator Christian Göritz.
In a new study on mice, researchers at Karolinska Institutet and Uppsala University in Sweden ...
In most materials, heat prefers to scatter. If left alone, a hotspot will gradually fade as it warms its surroundings. But in rare states of matter, heat can behave as a wave, moving back and forth somewhat like a sound wave that bounces from one end of a room to the other. In fact, this wave-like heat is what physicists call “second sound.”
Signs of second sound have been observed in only a handful of materials. Now MIT physicists have captured direct images of second sound for the first time.
The new images reveal how heat can move like a wave, ...
COLUMBUS, Ohio – People with aphasia have more trouble coming up with words they want to use when they’re prompted by images and words that carry negative emotional meaning, new research suggests.
The study involved individuals whose language limitations resulted from damage to the brain caused by a stroke – the most common cause of aphasia, affecting at least one-third of stroke survivors. The disorder impairs the expression and understanding of language as well as reading and writing.
Researchers from The Ohio State University who led the study said the findings – suggesting that prompts ...
Key Takeaways
Young women under the age of 30, Black women, and women with lower education levels are disproportionately affected by intimate partner homicide during pregnancy, reflecting the need to better serve and protect these vulnerable populations.
Particularly by firearms, increasing rates of intimate partner homicide of women who are pregnant or recently pregnant are occurring in states that have limited access to abortion.
Researchers describe a ‘dire ...
While combing through the human genome in 2007, computational geneticist Pardis Sabeti made a discovery that would transform her research career. As a then postdoctoral fellow at the Broad Institute of MIT and Harvard, Sabeti discovered potential evidence that some unknown mutation in a gene called LARGE1 had a beneficial effect in the Nigerian population. Other scientists had discovered that this gene was critical for the Lassa virus to enter cells. Sabeti wondered whether a mutation in LARGE1 ...
Feb. 8, 2024
Contact: Katherine McAlpine, 734-647-7087, kmca@umich.edu
Image
Leader in robotics at U-M and beyond elected to National Academy of Engineering
Dawn Tilbury is recognized for advances in manufacturing network control and human-robot interaction, as well as engineering leadership
ANN ARBOR—Dawn Tilbury, the Ronald D. and Regina C. McNeil Department Chair of Robotics at the University of Michigan, has been recognized with one of engineering's greatest honors—election to the National Academy of Engineering.
NAE members are outstanding researchers, ...
A competitive U.S. Department of Education program that prepares undergraduate students interested in careers in academic research has selected 16 undergraduate students from The University of Texas at Arlington to join.
The McNair Scholars Program was named for physicist and astronaut Ronald E. McNair, the second Black astronaut in U.S. history and one of several crew members killed when the space shuttle Challenger exploded on Jan. 28, 1986. The program assists qualified first-generation ...
ITHACA, N.Y. – Cornell University researchers have identified a new way to harness the antioxidant and antibacterial properties of a botanical compound to make nanofiber-coated cotton bandages that fight infection and help wounds heal more quickly.
The findings are especially important given the increasing prevalence of multidrug-resistant bacteria.
Cotton gauze is one of the most common wound dressings; it’s inexpensive, readily available, comfortable and biocompatible. However, it doesn’t promote healing or fight infection.
“Cotton alone cannot provide an answer for these ...