PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

DNA origami-based vaccines toward safe and highly-effective precision cancer immunotherapy

Broadly applicable vaccine platform enables enhanced anti-tumor responses through nanometer-precise spacing of adjuvant molecules and a variety of antigens

DNA origami-based vaccines toward safe and highly-effective precision cancer immunotherapy
2024-03-15
(Press-News.org)

By Benjamin Boettner 

(BOSTON) — Therapeutic cancer vaccines are a form of immunotherapy in the making that could not only destroy cancer cells in patients, but keep a cancer from coming back and spreading. Multiple therapeutic cancer vaccines are being studied in clinical trials, but despite their promise, they are not routinely used yet by clinical oncologists to treat their patients. 

The central ingredient of therapeutic cancer vaccines is antigens, which are preferentially produced or newly produced (neoantigens) by tumor cells and enable a patient’s immune system to search and destroy the cancerous cells. In most cases, those antigens cannot act alone and need the help of adjuvant molecules that trigger a general alarm signal in immune cells known as antigen-presenting cells (APCs). APCs internalize both antigen and adjuvant molecules and present the antigens to different types of T cells. Those T cells then launch an immediate attack against the tumor, or preserve a longer-lasting memory of the tumor for future defense.

A cancer vaccine’s effectiveness depends on the level and duration of the “alarm” its adjuvants can ring in APCs. Previously, researchers found that delivering adjuvant and antigen molecules to APCs simultaneously using nanostructures like DNA origami can increase APC activation. However, none of these approaches systematically investigated how the number and nanoscale arrangement of adjuvant molecules affect downstream tumor-directed immunity. 

Now, a research team at the Wyss Institute at Harvard University, Dana-Farber Cancer Institute (DFCI), Harvard Medical School (HMS), and Korea Institute of Science and Technology (KIST) has created a DNA origami platform called DoriVac, whose core component is a self-assembling square block-shaped nanostructure. To one face of the square block, defined numbers of adjuvant molecules can be attached in highly tunable, nanoprecise patterns, while the opposite face can bind tumor antigens. The study found that molecules of an adjuvant known as CpG spaced exactly 3.5 nanometers apart from each other resulted in the most beneficial stimulation of APCs that induced a highly-desirable profile of T cells, including those that kill cancer cells (cytotoxic T cells), those that cause beneficial inflammation (Th-1 polarized T cells), and those that provide a long-term immune memory of the tumor (memory T cells). DoriVac vaccines enabled tumor-bearing mice to better control the growth of tumors and to survive significantly longer than control mice. Importantly, the effects of DoriVac also synergized with those of immune checkpoint inhibitors, which are a highly successful immunotherapy that is already widely used in the clinic. The findings are published in Nature Nanotechnology.

“DoriVac’s DNA origami vaccine technology merges different nanotechnological capabilities that we have developed over the years with an ever-deepening knowledge about cancer-suppressing immune processes,” said Wyss Core Faculty member William Shih, Ph.D., who led the Wyss Institute team together with first-author Yang (Claire) Zeng, M.D., Ph.D.. “We envision that in the future, antigens identified in patients with different types of tumors could be quickly loaded onto prefabricated, adjuvant-containing DNA origami to enable highly effective personalized cancer vaccines that can be paired with FDA-approved checkpoint inhibitors in combination therapies.” Shih is also a Professor at HMS and DFCI’s Department of Cancer Biology and, as some of the other authors, a member of the NIH-funded cross-institutional “Immuno-engineering to Improve Immunotherapy” (i3) Center based at the Wyss. 

DNA origami rationale

The CpG adjuvant is a synthetic strand of DNA made up of repeated CpG nucleotide motifs that mimic the genetic material from immune cell-invading bacterial and viral pathogens. Like its natural counterparts, CpG adjuvants bind to a “danger receptor” called TLR9 in immune cells, which in turn induces an inflammatory (innate) immune response that works in concert with the antigen-induced (adaptive) immune response. 

“We knew from previous work that to trigger strong inflammatory responses, TLR9 receptors need to dimerize and aggregate into multimeric complexes binding to multiple CpG molecules. The nanoscale distances between the CpG-binding domains in effective TLR9 assemblies revealed by structural analysis fell right into the range of what we hypothesized we could mirror with DNA origami structures presenting precisely spaced CpG molecules,” explained Zeng, who was an Instructor in Medicine at the time of the study and now is a senior scientist at DFCI and Harvard Medical School (HMS). In addition to Shih, Zeng was also mentored on the project by senior authors Ju Hee Ryu, Ph.D., a Principal Researcher at KIST, and Wyss Founding Core Faculty member David Mooney, Ph.D., who also is Professor at Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and one of the i3 Center’s Principal Investigators. 

Zeng and the team fabricated DoriVac vaccines in which different numbers of CpG strands were spaced at 2.5, 3.5, 5, or 7 nanometers apart from each other on one face of the square block, and a model antigen was attached to the opposite face. They protected their structures from being degraded in the body using a chemical modification method that Shih’s group had developed earlier. When internalized by different types of APCs, including dendritic cells (DCs), which orchestrate tumor-directed T cell responses, the DoriVac vaccines improved the uptake of antigens compared to controls consisting of free antigen molecules. A CpG spacing of 3.5 nanometers produced the strongest and most beneficial responses in APCs, and significantly outperformed a control vaccine containing only free CpG molecules. “We were excited to find that the DoriVac vaccine preferentially induced an immune activation state that supports anti-tumor immunity, which is what researchers generally want to see in a good vaccine,” said Zeng. 

Besides spacing, the numbers of CpG molecules in DoriVac vaccines also mattered. The team tested vaccines containing between 12 to 63 optimally spaced CpG molecules and found that 18 CpG molecules provided the best APC activation. This meant that their approach can also help limit the dosage of CpG molecules and thus minimize commonly observed toxic side effects observed with adjuvants.

Gained in (tumor) translation

Importantly, these in vitro trends translated to in vivo mouse tumor models. When prophylactically injected under the skin of mice, DoriVac vaccines accumulated in the closest lymph nodes where they stimulated DCs. A vaccine loaded with a melanoma antigen prevented the growth of subsequently injected aggressive melanoma cells. While all control animals had succumbed to the cancer by day 42 of the experiment, DoriVac-protected animals all were alive. DoriVac vaccines also inhibited tumor growth in mice in which the formation of melanoma tumors was already underway, with a 3.5 nanometer spacing of 18 CpG molecules again providing maximum effects on DC and T cells, and the strongest reduction in tumor growth.

Next, the team asked whether DoriVac vaccines could also boost immune responses produced by small “neoantigens” emerging in melanoma tumors. Neoantigens are ideal targets because they are exclusively made by tumor cells. However, they often are not very immunogenic themselves, which make highly effective adjuvants an important component in neoantigen vaccines. A DoriVac vaccine customized with four neoantigens enabled the researchers to significantly suppress growth of the tumor in mice that produced the neoantigens.

Finally, the researchers asked whether DoriVac could synergize with immune checkpoint therapy, which reactivates T cells that have been silenced in tumors. In mice, the two therapies combined resulted in the total regression of melanoma tumors, and prevented them from growing back when the animals were exposed to the same tumor cells again four months later. The animals had built up an immune memory of the tumor. The team obtained a similar vaccination efficiency in a mouse lymphoma model.

“We think that DoriVac’s value for determining a sweet spot in adjuvant delivery and enhancing the delivery and effects of coupled antigens can pave the way to more effective clinical cancer vaccines for use in patients with a variety of cancers,” said Zeng. The team is currently translating the DoriVac platform toward its clinical application, which is supported by the study’s assessment of vaccine distribution and vaccine-directed antibodies in mice, as well as cytokines produced by immune cells in response to the vaccines in vivo. 

“The DoriVac platform is our first example of how our pursuit of what we call Molecular Robotics – synthetic bioinspired molecules that have programmable shape and function – can lead to entirely new and powerful therapeutics. This technology opens an entirely new path for development of designer vaccines with properties tailored to meet specific clinical challenges. We hope to see its rapid translation into the clinic,” said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at HMS and Boston Children’s Hospital, and the Hansjörg Wyss Professor of Bioinspired Engineering at SEAS.

Other authors on the study are Olivia Young, Christopher Wintersinger, Frances Anastassacos, James MacDonald, Giorgia Isinelli, Maxence Dellacherie, Miguel Sobral, Haiqing Bai, Amanda Graveline, Andyna Vernet, Melinda Sanchez, Kathleen Mulligan, Youngjin Choi, Thomas Ferrante, Derin Keskin, Geoffrey Fell, Donna Neuberg, Cathrine Wu, and Ick Chan Kwon. The study was funded by the Wyss Institute’s Validation Project and Institute Project programs, Claudia Adams Barr Program at DFCI, Korean Fund for Regenerative Medicine (award #21A0504L1), Intramural Research Program of KIST (award #2E30840), and National Institutes of Health (under the i3 Center supporting U54 grant (award #CA244726-01).

END


[Attachments] See images for this press release:
DNA origami-based vaccines toward safe and highly-effective precision cancer immunotherapy DNA origami-based vaccines toward safe and highly-effective precision cancer immunotherapy 2 DNA origami-based vaccines toward safe and highly-effective precision cancer immunotherapy 3

ELSE PRESS RELEASES FROM THIS DATE:

Printed polymer allows researchers to explore chirality and spin interactions at room temperature

2024-03-15
A printable organic polymer that assembles into chiral structures when printed has enabled researchers to reliably measure the amount of charge produced in spin-to-charge conversion within a spintronic material at room temperature. The polymer’s tunable qualities and versatility make it desirable not only for less expensive, environmentally friendly, printable electronic applications, but also for use in understanding chirality and spin interactions more generally.  Spintronic devices are electronic devices that harness the spin of an electron, ...

Special section of The Permanente Journal focuses on how early-life trauma correlates to poor health outcomes

2024-03-15
For Immediate Release OAKLAND, Calif., March 15, 2024 — Innovation in trauma-informed health care is the core focus of a special section in today’s issue of The Permanente Journal. The special section features 13 articles that touch on this increasingly prominent approach and reaches into several diverse subdomains such as mental health, physical health, body size diversity and systems-level implementation. Workplace wellness, clinician training and medical school curricula related to trauma are also covered in the issue. Trauma-informed health care has grown ...

New insights could improve treatment of liver fibrosis

New insights could improve treatment of liver fibrosis
2024-03-15
The liver is not only the largest internal organ but also vital for human life as a metabolic center. It also possesses remarkable self-healing powers: even when large portions are removed, such as during surgery, they quickly regenerate in healthy individuals. However, in cases of repeated or chronic injury to the liver tissue, as caused by excessive alcohol consumption or viral hepatitis, this regenerative capacity fails. Scarring occurs, known as fibrosis, where liver cells are replaced by fibrous tissue. The liver hardens and becomes increasingly unable to perform its functions - in the worst case, this leads to liver failure. To ...

Women involved in car crashes may be more likely to go into shock than men

2024-03-15
It is well known that car safety equipment was originally designed with male-representative bodies in mind. This means women sitting in the front row are more likely to suffer severe or fatal injuries in the case of a crash. They are also more likely to be trapped in crashed cars. Interested in the inequalities of car design and the resulting injuries, a team of researchers in the US has used trauma injury data from car crash victims to evaluate differences in injury patterns typical for males and females. “We found that vehicle crash injury patterns and injury severity differ between men and women. We also show that women are arriving ...

Researchers attempt to clarify correlation between strain and catalytic activities for 2D catalysts

2024-03-15
Researchers led by Prof. WANG Bin at National Center for Nanoscience and Technology (NCNST) of the Chinese Academy of Sciences recently reported that strain generated at bubbles of 2D materials can benefit the catalytic activity of the hydrogen evolution reaction (HER). The study was published in Chem Catalysis.  Green hydrogen produced by electrochemical water splitting offers the potential to achieve carbon-neutral production processes. Catalysts play a crucial role in facilitating HER at the anode, making it a key component in the transition to a sustainable energy future. Transition metal dichalcogenides (TMDs), particularly MoS2, have drawn attention ...

A theory linking ignition with flame provides roadmap to better combustion engines

A theory linking ignition with flame provides roadmap to better combustion engines
2024-03-15
In a study published on January 18, 2024 in the journal Physics of Fluids, researchers from Tohoku University theoretically linked ignition and deflagration in a combustion system, unlocking new configurations for stable, efficient combustion engines due to the possible existence of any number of steady-state solutions. "This research directly tackles the challenge of reducing carbon dioxide emissions by enhancing the efficiency of combustion engines, a significant source of these emissions," said Youhi Morii from the ...

Doping engineering in halide perovskite, an efficient synthesis method of white LEDs

Doping engineering in halide perovskite, an efficient synthesis method of white LEDs
2024-03-15
In 1879, Edison invented the incandescent lamp, which brought light to the night. In 1969, the first red light emitting diodes (LEDs) lamp came out. However, as the key to making white light bulbs, high-energy blue light has not been successfully commercialized. Until 1998, the Japan’s Nakamura Shoji made white LEDs, which marked the official entry of LEDs into the lighting era. LEDs have the advantages of high efficiency, environmental protection and energy saving. Metal halide perovskites (MHPs) have become a powerful candidate for new LEDs ...

Parallel physical random bit generation towards rates of order 100 Tb/s

Parallel physical random bit generation towards rates of order 100 Tb/s
2024-03-15
In our digital networked society, random bit generators (RBGs) are vital for services and state-of-the-art technologies such as cryptographically secured communication, blockchain technologies, and quantum key distribution. An ever-increasing demand to improve the security of digital information has shifted the generation of random bits from sole reliance on pseudorandom algorithms to the use of physical entropy sources. Shannon’s theorem establishes that it is required for the ultimate security to achieve bit rate matching that of the true RBGs with that of the communication systems. For this purpose, optical chaos has been widely studied in the past decades as a means for the ...

The Lancet Neurology: Neurological conditions now leading cause of ill health and disability globally, affecting 3.4 billion people worldwide

2024-03-15
Peer-reviewed / Modelling study / People Embargoed access to the paper and contact details for authors are available in Notes to Editors at the end of the release. Most comprehensive study to date finds the burden of nervous system (neurological) conditions is much greater than previously understood, with this diverse group of conditions affecting 43% of the world’s population (3.4 billion individuals) in 2021. Neurological conditions were responsible for 443 million years of healthy life lost due to illness, disability, and premature death (disability-adjusted life years) in 2021, making them the ...

Study of long-term student engagement challenges “one great teacher” narrative of education

2024-03-15
A positive relationship with a teacher at an early age may help children to feel more engaged with school, but not necessarily in the long term, new research shows. The finding comes from a University of Cambridge study of more than 3,600 young people in Australia, using data gathered at several points between the ages of eight and 15. The students’ levels of school engagement – meaning their interest in school and willingness to learn – fluctuated during this period, especially during the ...

LAST 30 PRESS RELEASES:

Research team receives $1.5 million to study neurological disorders linked to long COVID

Research using non-toxic bacteria to fight high-mortality cancers prepares for clinical trials

Do parents really have a favorite child? Here’s what new research says

Mussel bed surveyed before World War II still thriving

ACS Annual Report: Cancer mortality continues to drop despite rising incidence in women; rates of new diagnoses under 65 higher in women than men

Fewer skin ulcers in Werner syndrome patients treated with pioglitazone

Study finds surprising way that genetic mutation causes Huntington’s disease, transforming understanding of the disorder

DNA motors found to switch gears

Human ancestor thrived longer in harsher conditions than previous estimates

Evolution: Early humans adapted to extreme desert conditions over one million years ago

Race and ethnicity and diffusion of telemedicine in Medicaid for schizophrenia care after onset of the COVID-19 pandemic

Changes in support for advance provision and over-the-counter access to medication abortion

Protein level predicts immunotherapy response in bowel cancer

The staying power of bifocal contact lens benefits in young kids

Dose-dependent relationship between alcohol consumption and the risks of hepatitis b virus-associated cirrhosis and hepatocellular carcinoma: A meta-analysis and systematic review

International Alliance for Primary Immunodeficiency Societies selects Rockefeller University Press to publish new Journal of Human Immunity

Leader in mission-driven open publishing wins APE Award for Innovation in Scholarly Communication

Innovative 6D pose dataset sets new standard for robotic grasping performance

Evaluation of plasma neurodegenerative biomarkers for diagnosing minimal hepatic encephalopathy and predicting overt hepatic encephalopathy in Chinese patients with hepatic cirrhosis

MEXICO: How animals, people, and rituals created Teotihuacán

The role of political partisanship and moral beliefs in leadership selection

Parental favoritism isn't a myth

Arctic hotspots study reveals areas of climate stress in Northern Alaska, Siberia

Mount Sinai study finds wearable devices can detect and predict inflammatory bowel disease flare-ups

Peripheral blood CD4+/CD8+ t cell ratio predicts HBsAg clearance in inactive HBsAg carriers treated with peginterferon alpha

MIT Press’s Direct to Open reaches annual funding goal for 2025, opens access to 80 new monographs

New NCCN patient resource shares latest understanding of genetic testing to guide patient decision making

Synchronization in neural nets: Mathematical insight into neuron readout drives significant improvements in prediction accuracy

TLE6 identified as a protein associated with infertility in male mice

Thin lenses have a bright future

[Press-News.org] DNA origami-based vaccines toward safe and highly-effective precision cancer immunotherapy
Broadly applicable vaccine platform enables enhanced anti-tumor responses through nanometer-precise spacing of adjuvant molecules and a variety of antigens