PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Repairing patients’ dura more durably

Highly adhesive and mechanically strong Dural Tough Adhesive addresses multiple limitations in the repair of the dural membrane lining the brain and spinal cord after trauma and surgeries.

Repairing patients’ dura more durably
2024-03-20
(Press-News.org)

Repairing patients’ dura more durably

Highly adhesive and mechanically strong Dural Tough Adhesive addresses multiple limitations in the repair of the dural membrane lining the brain and spinal cord after trauma and surgeries.

By Benjamin Boettner

(BOSTON) — The dural membrane (dura) is the outermost of three meningeal layers that line the central nervous system (CNS), which includes the brain and spinal cord. Together, the meninges function as a shock-absorber to protect the CNS against trauma, circulate nutrients throughout the CNS, as well as remove waste. The dura also is a critical biological barrier that contains cerebrospinal fluid (CSF) surrounding all CNS tissues. Consequently, spontaneous injury, trauma, or necessary surgical procedures may cause CSF to leak, which can threaten patients’ lives, neurological functions, and recovery. 

“As neurosurgeons, we routinely open the dura to access the brain or spinal cord, but achieving a watertight seal of the dura at the conclusion of these procedures can be challenging in particular circumstances,” said Kyle Wu, M.D., a neurosurgeon and the co-first and co-corresponding author of a new study presenting an innovative dural repair solution. “Our current options are limited, consisting of suture repair or grafting, which can be difficult to perform if there is no viable tissue, with large defects, or during minimally invasive surgeries Currently available surgical sealants don’t adhere well to wet tissue, are too brittle, and lack the requisite toughness to reliably prevent CSF leakage.” Wu now is an Assistant Professor at The Ohio State University Wexner Medical Center, and at the start of the study was a neurosurgery resident at the Brigham and Women’s Hospital in Boston and Surgical Innovation Fellow at Boston Children’s Hospital.

A new solution to re-sealing the dura has now been developed by a collaborative team of bioengineers at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and neurosurgeons at the Brigham and Women’s Hospital, and Ohio State University’s Wexner Medical Center and James Cancer Hospital, which uses a multi-functional biomaterial that addresses key limitations of current repair methods and has potential to supplant them. The researchers, led by Wyss Institute Founding Core Faculty member and SEAS Robert P. Pinkas Family Professor of Bioengineering David Mooney, Ph.D., demonstrated that their “Dural Tough Adhesive” (DTA) performed better than currently used surgical sealants in tests using in vivo animal models and human-derived tissues ex vivo. The findings are published in Science Translational Medicine.

Taking inspiration from nature

DTAs are an interesting example of “bioinspired engineering.” Almost a decade ago, Mooney’s group, which had already gathered expertise in the design of hydrogels with distinct mechanical features, was looking for examples in nature that could help find new solutions for sealing and regenerating injured tissues in the body. “Material approaches to tissue regeneration at the time mainly focused on creating strong ‘adhesion’ to various body surfaces, but not so much on strong internal ‘cohesion,’ or toughness in the face of tissue mechanical forces,” said co-first author Benjamin Freedman, Ph.D., a former Wyss Research Associate on Mooney’s team. “In addition, they remained relatively ineffective in sticking to wet tissue surfaces covered by different body fluids.” Their search led the group to the Dusky Arion slug (Arion subfuscus), which secretes a special kind of mucus that it uses to rapidly glue itself in place to prevent predators from prying it off various surfaces.

In part by mimicking properties of the slug’s mucus, the team developed a hydrogel consisting of two intermixed polymer networks: a network of permanently cross-linked acrylamide molecules that creates a highly elastic gel, and a network of reversibly cross-linked alginate molecules that can redistribute the energy produced by mechanical forces in underlying tissues. Paired with a highly adhesive layer that uses chitosan, a fibrous, sugar-based substance derived from the outer skeletons of shellfish, the composite Tough Adhesive (TA) hydrogel can bond to a variety of liquid-covered surfaces by forming multiple types of chemical interactions with them that cooperatively create a tight seal. “The Mooney group had previously advanced TA approaches for the repair of multiple tissues, including wounded tissue surfaces, tendons, neural tube defects of babies in the womb, and others. When Dr. Wu reached out to us, we embraced dural membrane leakage as a new clinical opportunity for TAs,” said Freedman, who spearheaded several TA applications on Mooney’s team.

Improved protection for the brain and spinal cord 

The team demonstrated that DTA, whose composition follows the same TA basic formulation, has repair-relevant features that are superior to those of existing surgical sealants. In ex vivo studies, they showed that DTA adheres significantly stronger to pigs’ dural membranes and can withstand higher pressures before failing, compared to a commercial sealant. Superior mechanical strength is an important feature of DTAs, since increased intracranial pressure may be encountered in conditions such as brain tumors, stroke, trauma, idiopathic intracranial hypertension, and hydrocephalus. 

 

In vivo, when placed directly onto the dura of rats, DTA maintained its structure and was fully biocompatible for at least four weeks, causing only minimal irritation, which was comparable to commercial sealants.

The team showed that DTAs could deliver these same benefits when tested using human cadaveric tissue. “In light of the persistent trend toward minimally invasive neurosurgeries for patients’ benefit, an ideal dural sealant must not only be a better alternative to suture repair, but also be easier to handle and deploy in tight spaces – current repair methods are not good at both,” said Wu. “In fact, we were able to introduce DTA through the nasal cavity of a human cadaveric cephalus and place it accurately onto a leaking area of the skull base where it withstood artificially generated intracranial pressures that were well beyond the range of even pathological pressures.”

Translating some of their key in vitro findings to an in vivo situation, Mooney, Freedman, Wu and their colleagues focused on a tear in the dural sac enveloping the spinal cord of pigs. The pig spine strongly resembles that of humans. Dural tears are a feared complication during spine surgery. The team successfully sealed incisions in the dura with a DTA patch, or alternatively with the commercial spine sealant DuraSeal as a comparison. Then, they increased the fluid pressure within the spinal cord, applying a physiologic maneuver that many neurosurgeons perform to test the integrity of dural repair at the end of surgeries. While DTA-repaired incisions never experienced any leakage with these mild increases in fluid pressure, DuraSeal-repaired incisions started leaking in 40% of the cases. In the model, DTA also readily resisted leakage even when exposed to fluid pressures much higher than those experienced in the body.

“We are excited to have opened a new perspective for neurosurgeons with this study that, in the future, could facilitate a variety of surgical interventions and lower the risk for patients who need to undergo them. This study also underscores how unique and well-understood advances in the design of biomaterials, like the ones we made in our Tough Adhesive platform, have the potential to impact multiple very diverse areas of regenerative medicine,” said senior author Mooney.

Other authors on the study are Wenya Linda Bi, M.D., Ph.D., Associate Professor of Neurosurgery at Harvard Medical School and Brigham and Women’s Hospital, as well as Phoebe Kwon, Matthew Torre, and Daniel Kent. The work was supported by the Wyss Institute at Harvard University, and National Institutes of Health (under grant# K99/R00AG065495). 

PRESS CONTACTS

Wyss Institute for Biologically Inspired Engineering at Harvard University
Benjamin Boettner, benjamin.boettner@wyss.harvard.edu, +1 617-432-8232

###

The Wyss Institute for Biologically Inspired Engineering at Harvard University (www.wyss.harvard.edu) is a research and development engine for disruptive innovation powered by biologically-inspired engineering with visionary people at its heart. Our mission is to transform healthcare and the environment by developing ground-breaking technologies that emulate the way Nature builds and accelerate their translation into commercial products through formation of startups and corporate partnerships to bring about positive near-term impact in the world. We accomplish this by breaking down the traditional silos of academia and barriers with industry, enabling our world-leading faculty to collaborate creatively across our focus areas of diagnostics, therapeutics, medtech, and sustainability. Our consortium partners encompass the leading academic institutions and hospitals in the Boston area and throughout the world, including Harvard’s Schools of Medicine, Engineering, Arts & Sciences and Design, Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Boston Children’s Hospital, Dana–Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité – Universitätsmedizin Berlin, University of Zürich, and Massachusetts Institute of Technology.

The Harvard John A. Paulson School of Engineering and Applied Sciences (http://seas.harvard.edu) serves as the connector and integrator of Harvard’s teaching and research efforts in engineering, applied sciences, and technology. Through collaboration with researchers from all parts of Harvard, other universities, and corporate and foundational partners, we bring discovery and innovation directly to bear on improving human life and society.

Brigham and Women’s Hospital (https://www.brighamandwomens.org) is a founding member of Mass General Brigham and a teaching affiliate of Harvard Medical School. With nearly 1,000 inpatient beds, approximately 50,000 inpatient stays, and over 2.6 million outpatient encounters annually, clinicians across the Brigham provide compassionate, high-quality care in virtually every medical and surgical specialty to patients locally, regionally, nationally and around the world. An international leader in basic, clinical, and translational research, Brigham and Women’s Hospital has nearly 5,000 scientists, including physician-investigators, renowned biomedical researchers and faculty supported by nearly $750 million in funding. The Brigham’s medical preeminence and service to the community dates to 1832, with the opening of the Boston Lying In, one of the nation's first maternity hospitals designed to care for women unable to afford in-home medical care. Its merger with the Free Hospital for Women resulted in the Boston Hospital for Women in 1966. In 1980, the Boston Hospital for Women, the Peter Bent Brigham Hospital and the Robert Breck Brigham Hospital officially merged to become Brigham and Women’s Hospital. With nearly 21,000 employees across the Brigham family – including the Brigham and Women’s Physicians Organization and Brigham and Women’s Faulkner Hospital – that rich history is the foundation for our commitment to providing superb care for some of the most complex cases, pursuing breakthroughs in biomedical research, training the next generation of health care providers, and serving the local and global community.

 

 

 

 

END


[Attachments] See images for this press release:
Repairing patients’ dura more durably Repairing patients’ dura more durably 2

ELSE PRESS RELEASES FROM THIS DATE:

Quantum talk with magnetic disks

Quantum talk with magnetic disks
2024-03-20
Quantum computers promise to tackle some of the most challenging problems facing humanity today. While much attention has been directed towards the computation of quantum information, the transduction of information within quantum networks is equally crucial in materializing the potential of this new technology. Addressing this need, a research team at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is now introducing a new approach for transducing quantum information: the team has manipulated quantum bits, so called qubits, by harnessing the magnetic field ...

Earlier retirement for people with chronic musculoskeletal pain

Earlier retirement for people with chronic musculoskeletal pain
2024-03-20
Frequent musculoskeletal pain is linked with an increased risk of exiting work and retiring earlier, according to a new study from the University of Portsmouth. The paper published this week in open-access journal PLOS ONE found the association between musculoskeletal pain and retiring earlier persisted even after accounting for working conditions, job satisfaction and sex. Dr Nils Niederstrasser and colleagues used data on 1,156 individuals aged 50+ living in England who took part in the English Longitudinal Study of Ageing. Over the course of the 14-year data collection period, 1,073 of the individuals retired. The researchers found that people with musculoskeletal ...

Tiny magnetic implants enable wireless healthcare monitoring

2024-03-20
A millimeter-scale, chip-less and battery-less implant can wirelessly monitor a series of parameters within your body and communicate with a wearable device attached on the skin. In a recent study published in the journal Science Advances, researchers from Peking University have unveiled a miniaturized implantable sensor capable of health monitoring without the need of transcutaneous wires, integrated circuit chips, or bulky readout equipment, thereby reducing infection risks, improving biocompatibility, and enhancing portability. Han Mengdi from Peking University, the lead researcher of ...

New study suggests that while social media changes over decades, conversation dynamics stay the same

2024-03-20
Published in Nature, a new study has identified recurring, ‘toxic’ human conversation patterns on social media, which are common to users irrespective of the platform used, the topic of discussion, and the decade in which the conversation took place. In particular, the study suggests that prolonged conversations on social media are more prone to toxicity, and polarisation, when divergent viewpoints from debate lead to an escalation of online disagreement. Contrary to the prevailing assumption, the study suggests that toxic interactions do not deter users from engagement, they actively participate in conversations. It also suggests that toxicity ...

Study finds non-immune brain cells can acquire immune memory, may drive CNS pathologies like multiple sclerosis

2024-03-20
Immunological memory — the ability to respond to a previously encountered antigen, or foreign substance, with greater speed and intensity on re-exposure is a hallmark of adaptive immunity. Innate immune cells also develop metabolic and epigenetic memories that boost their responses, but it was previously unknown if non-immune cells like astrocytes, which interact with immune cells and contribute to inflammation in the central nervous system (CNS), acquire aspects of immune memory of encountering ...

Canada should ban all unhealthy food marketing children may be exposed to

2024-03-20
Quebec City, March 20, 2024–Canada should ban marketing of unhealthy foods wherever children may be exposed, whether on TV, social media or billboards. This is one of the main conclusions of a Canada-wide study involving more than fifty food and nutrition experts made public today by a team from Université Laval's Faculty of Agriculture and Food Sciences.   The study, conducted as part of a research program funded by the Canadian Institutes of Health Research, also recommends better funding ...

The 7th World Conference on Targeting Phage Therapy, taking place in Malta in 2024, will showcase current developments in phage therapy and offer strategic insights into its future directions

The 7th World Conference on Targeting Phage Therapy, taking place in Malta in 2024, will showcase current developments in phage therapy and offer strategic insights into its future directions
2024-03-20
The 7th World Conference on Targeting Phage Therapy 2024 is set to take place on June 20-21 at the Corinthia Palace Malta, introducing the latest advancements within the field of phage research and therapy. Robert T. Schooley, M.D., Professor of Medicine at the University of California, San Diego, and Co-Director of the Center for Innovative Phage Applications and Therapeutics, will lead the discourse, presenting insights and strategies essential to Phage Therapy in his talk titled "Phage Therapeutics 2024: Essential Translational Research Components for Clinical Trials."   Agenda at a Glance Day One: will focus on Phages, Hosts & Microbiome, exploring ...

Companies reluctant to pay extra to confirm suppliers’ sustainability claims

2024-03-20
Many companies proclaiming ethical credentials resist paying a premium to test their suppliers’ sustainability claims, new research suggests. A team from Bayes Business School (formerly Cass), City, University of London, studied responses from 234 managers with procurement decision-making powers. While buyers’ purchasing decisions are not solely price-driven, the team found, they are often happy to accept suppliers’ reassurances about sustainability rather than pay a premium for third party verification. Despite accepting ...

Deep Earth electrical grid mystery solved

Deep Earth electrical grid mystery solved
2024-03-20
To “breathe” in an environment without oxygen, bacteria in the ground beneath our feet depend upon a single family of proteins to transfer excess electrons, produced during the “burning” of nutrients, to electric hairs called nanowires projecting from their surface, found by researchers at Yale University and NOVA School of Science and Technology, NOVA University Lisbon (NOVA-FCT).  This family of proteins in essence acts as plugs that power these nanowires to create a natural electrical ...

Metformin during pregnancy affects the brain development in offspring mice

2024-03-20
With the rise in gestational diabetes and metabolic disorders during pregnancy, metformin is also being prescribed more frequently. Although it is known that the oral antidiabetic agent can cross the placental barrier, the impacts on the brain development of the child are largely unknown. An interdisciplinary research team from the German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE) have now been able to demonstrate in a mouse model that although metformin has positive effects in pregnant animals, it does not in the offspring. The results were published in the specialist journal ‘Molecular ...

LAST 30 PRESS RELEASES:

First new treatment for asthma attacks in 50 years

Certain HRT tablets linked to increased heart disease and blood clot risk

Talking therapy and rehabilitation probably improve long covid symptoms, but effects modest

Ban medical research with links to the fossil fuel industry, say experts

Different menopausal hormone treatments pose different risks

Novel CAR T cell therapy obe-cel demonstrates high response rates in adult patients with advanced B-cell ALL

Clinical trial at Emory University reveals twice-yearly injection to be 96% effective in HIV prevention

Discovering the traits of extinct birds

Are health care disparities tied to worse outcomes for kids with MS?

For those with CTE, family history of mental illness tied to aggression in middle age

The sound of traffic increases stress and anxiety

Global food yields have grown steadily during last six decades

Children who grow up with pets or on farms may develop allergies at lower rates because their gut microbiome develops with more anaerobic commensals, per fecal analysis in small cohort study

North American Early Paleoindians almost 13,000 years ago used the bones of canids, felids, and hares to create needles in modern-day Wyoming, potentially to make the tailored fur garments which enabl

Higher levels of democracy and lower levels of corruption are associated with more doctors, independent of healthcare spending, per cross-sectional study of 134 countries

In major materials breakthrough, UVA team solves a nearly 200-year-old challenge in polymers

Wyoming research shows early North Americans made needles from fur-bearers

Preclinical tests show mRNA-based treatments effective for blinding condition

Velcro DNA helps build nanorobotic Meccano

Oceans emit sulfur and cool the climate more than previously thought

Nanorobot hand made of DNA grabs viruses for diagnostics and blocks cell entry

Rare, mysterious brain malformations in children linked to protein misfolding, study finds

Newly designed nanomaterial shows promise as antimicrobial agent

Scientists glue two proteins together, driving cancer cells to self-destruct

Intervention improves the healthcare response to domestic violence in low- and middle-income countries

State-wide center for quantum science: Karlsruhe Institute of Technology joins IQST as a new partner

Cellular traffic congestion in chronic diseases suggests new therapeutic targets

Cervical cancer mortality among US women younger than age 25

Fossil dung reveals clues to dinosaur success story

New research points way to more reliable brain studies

[Press-News.org] Repairing patients’ dura more durably
Highly adhesive and mechanically strong Dural Tough Adhesive addresses multiple limitations in the repair of the dural membrane lining the brain and spinal cord after trauma and surgeries.