(Press-News.org) PASADENA, Calif.—Astronomers at the California Institute of Technology (Caltech), University of Illinois at Urbana-Champaign (UIUC), and University of Hawaii (UH) have discovered 16 close-knit pairs of supermassive black holes in merging galaxies.
The discovery, based on observations done at the W. M. Keck Observatory on Hawaii's Mauna Kea, is being presented in Seattle on January 12 at the meeting of the American Astronomical Society, and has been submitted for publication in the Astrophysical Journal.
These black-hole pairs, also called binaries, are about a hundred to a thousand times closer together than most that have been observed before, providing astronomers a glimpse into how these behemoths and their host galaxies merge—a crucial part of understanding the evolution of the universe. Although few similarly close pairs have been seen previously, this is the largest population of such objects observed as the result of a systematic search.
"This is a very nice confirmation of theoretical predictions," says S. George Djorgovski, professor of astronomy, who will present the results at the conference. "These close pairs are a missing link between the wide binary systems seen previously and the merging black-hole pairs at even smaller separations that we believe must be there."
As the universe has evolved, galaxies have collided and merged to form larger ones. Nearly every one—or perhaps all—of these large galaxies contains a giant black hole at its center, with a mass millions—or even billions—of times higher than the sun's. Material such as interstellar gas falls into the black hole, producing enough energy to outshine galaxies composed of a hundred billion stars. The hot gas and black hole form an active galactic nucleus, the brightest and most distant of which are called quasars. The prodigious energy output of active galactic nuclei can affect the evolution of galaxies themselves.
While galaxies merge, so should their central black holes, producing an even more massive black hole in the nucleus of the resulting galaxy. Such collisions are expected to generate bursts of gravitational waves, which have yet to be detected. Some merging galaxies should contain pairs of active nuclei, indicating the presence of supermassive black holes on their way to coalescing. Until now, astronomers have generally observed only widely separated pairs—binary quasars—which are typically hundreds of thousands of light-years apart.
"If our understanding of structure formation in the universe is correct, closer pairs of active nuclei must exist," adds Adam Myers, a research scientist at UIUC and one of the coauthors. "However, they would be hard to discern in typical images blurred by Earth's atmosphere."
The solution was to use Laser Guide Star Adaptive Optics, a technique that enables astronomers to remove the atmospheric blur and capture images as sharp as those taken from space. One such system is deployed on the W. M. Keck Observatory's 10-meter telescopes on Mauna Kea.
The astronomers selected their targets using spectra of known galaxies from the Sloan Digital Sky Survey (SDSS). In the SDSS images, the galaxies are unresolved, appearing as single objects instead of binaries. To find potential pairs, the astronomers identified targets with double sets of emission lines—a key feature that suggests the existence of two active nuclei.
By using adaptive optics on Keck, the astronomers were able to resolve close pairs of galactic nuclei, discovering 16 such binaries out of 50 targets. "The pairs we see are separated only by a few thousands of light-years—and there are probably many more to be found," says Hai Fu, a Caltech postdoctoral scholar and the lead author of the paper.
"Our results add to the growing understanding of how galaxies and their central black holes evolve," adds Lin Yan, a staff scientist at Caltech and one of the coauthors of the study.
"These results illustrate the discovery power of adaptive optics on large telescopes," Djorgovski says. "With the upcoming Thirty Meter Telescope, we'll be able to push our observational capabilities to see pairs with separations that are three times closer."
INFORMATION:
In addition to Djorgovski, Fu, Myers, and Yan, the team includes Alan Stockton from the University of Hawaii at Manoa. The work done at Caltech was supported by the National Science Foundation and the Ajax Foundation.
Images of some of the merging systems are available at http://www.astro.caltech.edu/~george/bbh.
Astronomers discover close-knit pairs of massive black holes
2011-01-13
ELSE PRESS RELEASES FROM THIS DATE:
Scaling up: The future of nanoscience
2011-01-13
In the late 1950s, Richard Feynman famously imagined a science where researchers and engineers could achieve remarkable feats by manipulating matter and creating structures all the way down to the level of individual atoms.
Now, over fifty years after "There's Plenty of Room at the Bottom," four prominent researchers -– David Awschalom, Angela Belcher, Donald Eigler, and Michael Roukes -– are sharing their thoughts about the future of nanoscience and nanotechnology. In a special dialogue ahead of a Kavli Futures Symposium on the same topic, the scientists focused on ...
Baby-led weaning is feasible but could cause nutritional problems for minority of infants
2011-01-13
Most babies can reach out for and eat finger food by six to eight months, according to a study in the January issue of Maternal and Child Nutrition.
However baby-led weaning - which advocates babies feeding themselves solid foods, rather than being spoon fed purees - could lead to nutritional problems for the small number of children who develop later than average.
That is why UK researchers - led by child health specialist Professor Charlotte M Wright from the University of Glasgow, Scotland - recommend combining self-feeding with solid finger food with traditional ...
Study sheds new light on river blindness parasite
2011-01-13
The team found that a bacterium inside the worm acts as a 'disguise' for the parasite, resulting in the immune system reacting to it in an ineffective way. The bacteria protect the worm from the body's natural defences, but once the bacteria are removed with antibiotics, the immune system responds appropriately, releasing cells, called eosinophils, that kill the worm.
Antibiotics are successful against the parasite, but the long treatment regime means that it has limited use across whole communities. These new findings suggest that if medics could prime the immune ...
Sleep mode: The energy cost of sleep deprivation
2011-01-13
The findings show that missing a night of sleep burns roughly 135 calories, the equivalent of two slices of bread or a 225 ml glass of semi-skimmed milk. In terms of physical exertion, this amounts to walking just under two miles. On the flip side, eight hours of sleep saved the same approximate amount of energy.
'While the amount of energy saved during sleep may seem small, it was actually more than we expected,' says Professor Kenneth Wright, lead author of the study and Director of Colorado University's Sleep and Chronobiology Laboratory. 'If one considers the amount ...
The 'Spaser' heats up laser technology
2011-01-13
Lasers have revolutionized the communications and medical industries. They focus light to zap tumors and send digital TV signals and telephone communications around the world.
But the physical length of an ordinary laser cannot be less than one half of the wavelength of its light, which limits its application in many industries. Now the Spaser, a new invention developed in part by Tel Aviv University, can be as small as needed to fuel nano-technologies of the future.
Prof. David Bergman of Tel Aviv University's Department of Physics and Astronomy developed and patented ...
Adrenaline receptor 'frozen in action' by VIB researchers
2011-01-13
Brussels - Adrenaline, the hormone that prepares our body to fight or flight, acts on a hyperdynamic receptor. This molecule switches so fast between several positions, that it was impossible to image it. Until now. Scientists, including Jan Steyaert of VIB and the Vrije Universiteit Brussel in Belgium, and colleagues from Stanford University in the US, have "frozen the molecule in action" using Xaperones™, tiny, stable antibodies developed by the Brussels scientists. The Xaperones™ bind like a key to a lock, holding the adrenaline receptor in one position -- the on position. ...
Origins of the pandemic: Study reveals lessons of H1N1
2011-01-13
As H1N1 'Swine Flu' returns to the national headlines a new research paper reveals the key lessons about the origins of the 2009 pandemic. The paper, published today in BioEssays, reveals how the pandemic challenges the traditional understanding of 'antigenic shift' , given that the virus emerged from an existing influenza subtype.
"H1N1 emerged in February 2009 in Mexico and swept around the globe within 6 months." said Professor Hans Dieter Klenk from Philipps-Universität Marburg. "The conventional ideal is that pandemics are fuelled by new strands which emerge in the ...
New approach to modeling power system aims for better monitoring and control of blackouts
2011-01-13
Major power outages are fairly infrequent, but when they happen they can result in billions of dollars in costs – and even contribute to fatalities. Now research from North Carolina State University has led to the development of an approach by which high-resolution power-system measurements, also referred to as Synchrophasors, can be efficiently used to develop reliable models of large power systems, which would help us keep an eye on their health.
Synchrophasors are real-time measurements of voltages and currents that provide a very high-resolution view of various complex ...
People neglect who they really are when predicting their own future happiness
2011-01-13
Humans are notoriously bad at predicting their future happiness. A new study published in Psychological Science, a journal of the Association for Psychological Science, suggests that part of the reason for these mispredictions lies in failing to recognize the key role played by one's own personality when determining future emotional reactions.
The new evidence comes from Jordi Quoidbach, a psychological scientist at the University of Liege, Belgium. Quoidbach and Elizabeth Dunn, his collaborator at the University of British Columbia, found that our natural sunny or negative ...
Fastest movie in the world recorded
2011-01-13
When we catch a cold, the immune system steps in to defend us. This is a well-known biological fact, but is difficult to observe directly. Processes at a molecular level are not only miniscule, they are often extremely fast, and therefore difficult to capture in action. Scientists at Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) and the Technische Uni-versität Berlin (TUB) now present a method that takes us a good step towards producing a "molecular movie". They can record two pictures at such a short time interval that it will soon be possible to observe molecules ...