PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

From a cryptic genetic element in the human gut to a sensitive biomarker

Study shows that a mysterious plasmid that is highly prevalent in the human gastrointestinal tract could be used to identify faecal contamination and offer insights into the severity of intestinal diseases

2024-04-16
(Press-News.org)

A component of the human intestinal flora that has been little studied to date is the focus of a new study. Plasmids are small extrachromosomal genetic elements that frequently occur in bacterial cells and can influence microbial lifestyles – yet their diversity in natural habitats is poorly understood. An international team led by Prof. Dr. A. Murat Eren from the Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB) reports in the science journal Cell, a mysterious plasmid, is one of the most numerous genetic elements in the human gut that could potentially serve as a powerful biomarker for identifying health hazards such as faecal contamination of water or human disorders such as Inflammatory Bowel Disease. According to the team’s analyses, this plasmid is present in the intestines of more than 90 percent of individuals in industrialised countries.

Plasmids are extrachromosomal DNA sequences which are common to cells from all domains of life. Eren describes them as “typically small genetic entities that carry additional genes”. They can be exchanged between different bacterial cells and even between different types of bacteria. The replication of plasmids is dependent on their host cells: but they make up for it by providing their hosts with in some cases extremely important fitness determinants. For instance, some plasmids contain genes that encode antibiotic resistance, which help their bacterial hosts to survive antibiotics, contributing one of the most pressing public health concerns around the globe.

There are also other plasmids which, according to the research to date, do not contain genes encoding obvious beneficial functions for their host. “These so-called ‘cryptic plasmids’ are often referred to as genetic parasites. They remain a mystery in microbial ecology because from an evolutionary perspective they should not exist at all," explains Eren, a computer scientist and Professor of Ecosystem Data Science at the University of Oldenburg.

Identifying plasmids has been a difficult undertaking so far. For some time now, scientists have been able to extract genetic material directly from environmental samples and, for example, analyse the microbial community in the human gut in its entirety, without having to cultivate individual bacterial organisms. However, the ability to confidently distinguish what is a plasmid among this conglomeration of genetic material, referred to as the metagenome, poses a considerable challenge.

To solve this problem, Eren and his colleagues developed a new machine learning approach. As the team reported in an article recently published in the science journal Nature Microbiology, using this approach they identified over 68,000 plasmids in human intestinal flora, and also discovered that a certain cryptic plasmid called pBI143 was particularly abundant in their dataset.

One of the most numerous genetic entities in the human gut

In the study published in Cell, the team of researchers took a closer look at this plasmid, which consists of only two genes that rather surprisingly only serves for its own replication and mobilization across bacterial cells with no other clear benefit. To better understand the ecology of pBI143, the team analysed 60,000 human and 40,000 environmental metagenomes generated from various habitats. “We found that pBI143 has a list of very interesting features," Eren explains. The team discovered that more than 90 percent of people in industrialised countries carry the plasmid and that on average it is one of the most numerous genetic entities in the human gut. “On average it was more than ten times as numerous as a viral genome which was previously thought to be the most abundant genetic extrachromosomal element in the human gut," says the researcher.

Further analyses revealed that the plasmid occurred almost exclusively in the human gut but was virtually absent in datasets from other environments such as the oceans, soils, plants and the digestive organs of animals and their faeces. The only other samples in which the researchers were able to detect the characteristic gene sequence for these plasmids was in samples from environments that are influenced by humans, such as waste water, hospital surfaces and laboratory rats.

Due to its sheer numbers, prevalence across humans, and its conservancy across human populations, the team of researchers hypothesised that pBI143 could, for instance, be used as a biomarker in testing for faecal contamination. “In fact, we were able to show that this plasmid is a more sensitive marker for detecting fecal contamination in drinking water compared to state-of-the-art biomarkers based on specific gene sequences of human intestinal bacteria,” says Eren.

Non-invasive method to quantify progress of IBD

The team also identified another potential application of this prevalent genetic entity in the context of human disorders such as Inflammatory Bowel Disease (IBD), a medical condition that affects 3 million people in Europe alone. They were able to demonstrate that the relative copy number of this cryptic plasmid increased almost four times in the intestines of people suffering from IBD compared as in the intestines of healthy individuals, suggesting that the changes of the copy number of the plasmid can serve as a non-invasive method to quantify the disease progress or severity.

At the HIFMB, Eren’s team is developing new tools at the intersection of computer science and microbiology to identify and characterise naturally occurring plasmids and other mobile genetic elements in bacteria that live in the ocean. They strive to gain a better understanding of the ecology and evolution of microbes, and strategies that enable to them to respond to their everchanging environments for new biotechnological applications that can ameliorate crises we face.

 

END



ELSE PRESS RELEASES FROM THIS DATE:

Researchers can help shipowners achieve ambitious climate targets

Researchers can help shipowners achieve ambitious climate targets
2024-04-16
Shipowners around the world are in a very difficult position, because they are having to order new ships now that will run on fuel and technologies that are not yet fully developed. A new study suggests that ammonia could be a smart and energy-efficient fuel in the race to achieve net zero in shipping. Researchers at the Department of Industrial Economics and Technology Management (IØT) and the Department of Marine Technology (IMT) at the Norwegian University of Science and Technology (NTNU) ...

Florida Wildlife Corridor eases worst impacts of climate change

Florida Wildlife Corridor eases worst impacts of climate change
2024-04-16
From rising temperatures and altered precipitation patterns to intense weather events such as hurricanes, Florida is experiencing significant climate-related challenges in tandem with skyrocketing insurance rates. As the state’s population continues to surge by 1,000 new residents a day, it is projected to lose 3.5 million acres of land to development by 2070, threatening Florida’s future ability to maintain biodiversity and ecosystem services. A first-of-its-kind study highlights how Florida can buffer itself against both climate change ...

Creating an island paradise in a fusion reactor

Creating an island paradise in a fusion reactor
2024-04-16
In their ongoing quest to develop a range of methods for managing plasma so it can be used to generate electricity in a process known as fusion, researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have shown how two old methods can be combined to provide greater flexibility.  While the two methods – known as electron cyclotron current drive (ECCD) and applying resonant magnetic perturbations (RMP) – have long been studied, this is the first time researchers have simulated how they can be used together to ...

Field-margin wetlands alone can’t fix the Gulf of Mexico’s dead zone

2024-04-16
Each summer, a hypoxic dead zone forms in the Gulf of Mexico, making some marine habitats unlivable. The dead zone is caused by nutrients—primarily from agricultural fertilizers—flowing into the Gulf from the Mississippi River. Restoring wetlands at field margins has been proposed to intercept some of the runoff, as wetland plants and soils are capable of absorbing nutrients like a living sponge. But estimates of nutrient removal by restored wetlands have varied widely. Shan Zuidema and colleagues took a whole-system approach to modeling the potential for wetlands to ameliorate the flow of nitrate to the ...

Research has lost none of its innovative drive

2024-04-16
A high-profile study made headlines in 2023 stating that the scientific and innovation system is producing less and less completely new knowledge. Researchers at the University of Basel are now refuting this claim, at least for patents: It is based on a measurement error. The discovery of mRNA in the 1960s was groundbreaking. Suddenly there were completely new findings that ushered in new developments. This kind of discovery is described as “disruptive”. In contrast, research findings are “consolidating” when they build upon existing knowledge. They are also important, as the example of the ...

A nematode gel to protect crops in Africa and Asia

A nematode gel to protect crops in Africa and Asia
2024-04-16
The fall armyworm is a destructive corn pest, which recently arrived in Africa and Asia from the Americas and began causing major yield losses and increased use of insecticides, which pose environmental and human health risks. Entomopathogenic nematodes are soil-dwelling roundworms that can parasitize and kill fall armyworms with no risks to people or the environment, but application can be tricky because the nematodes are susceptible to desiccation and UV radiation from sunlight. Patrick Fallet and colleagues report success using an innocuous biodegradable ...

Breakthrough in benzofuran synthesis: New method enables complex molecule creation

Breakthrough in benzofuran synthesis: New method enables complex molecule creation
2024-04-16
In the field of organic chemistry, scientists are always looking out for new types of reactions to unlock synthesis routes for challenging compounds. Most of the progress that we have witnessed in pharmaceutics and agrochemicals over the past few decades can be traced back to the discovery of novel practical reaction pathways. Such pathways often involve the selective replacement of a functional group with another, the formation of aromatic rings, or the strategic cleaving of parts of a molecule. But what about the rearrangement of existing functional groups within a molecule? Also known as ‘substituent ...

Exploring the interactions between baby marmosets and their caregivers

Exploring the interactions between baby marmosets and their caregivers
2024-04-16
The connection that infants form with their parents or caregivers is crucial for their cognitive, social, and emotional development. These attachments vary in quality, depending on how caregivers respond to the infant's needs. When caregivers are attentive, infants are likely to develop secure attachments. However, if caregivers neglect their needs, infants may develop insecurity, leading to challenges in emotional development and difficulty in forming healthy relationships later in life.   To understand how parenting influences attachment formation and child development, researchers led by Associate Professor Atsuko ...

MD Anderson and CureVac enter strategic collaboration to develop novel cancer vaccines

2024-04-16
HOUSTON and TÜBINGEN, Germany ― The University of Texas MD Anderson Cancer Center and CureVac N.V. today announced a co-development and licensing agreement to develop novel mRNA-based cancer vaccines. The collaboration creates strong synergies between CureVac’s unique end-to-end capabilities for cancer antigen discovery, mRNA design, and manufacturing and MD Anderson’s expertise in cancer antigen discovery and validation, translational drug development, and clinical research. The collaboration will focus on the development of differentiated cancer vaccine ...

Deadly bacteria show thirst for human blood

Deadly bacteria show thirst for human blood
2024-04-16
PULLMAN, Wash. –  Some of the world's deadliest bacteria seek out and feed on human blood, a newly-discovered phenomenon researchers are calling “bacterial vampirism.” A team led by Washington State University researchers have found the bacteria are attracted to the liquid part of blood, or serum, which contains nutrients the bacteria can use as food. One of the chemicals the bacteria seemed particularly drawn to was serine, an amino acid found in human blood that is also a common ingredient in protein drinks. The research finding, published in the journal eLife, provides new insights into how bloodstream infections ...

LAST 30 PRESS RELEASES:

First Editorial of 2026: Resisting AI slop

Joint ground- and space-based observations reveal Saturn-mass rogue planet

Inheritable genetic variant offers protection against blood cancer risk and progression

Pigs settled Pacific islands alongside early human voyagers

A Coral reef’s daily pulse reshapes microbes in surrounding waters

EAST Tokamak experiments exceed plasma density limit, offering new approach to fusion ignition

Groundbreaking discovery reveals Africa’s oldest cremation pyre and complex ritual practices

First breathing ‘lung-on-chip’ developed using genetically identical cells

How people moved pigs across the Pacific

Interaction of climate change and human activity and its impact on plant diversity in Qinghai-Tibet plateau

From addressing uncertainty to national strategy: an interpretation of Professor Lim Siong Guan’s views

Clinical trials on AI language model use in digestive healthcare

Scientists improve robotic visual–inertial trajectory localization accuracy using cross-modal interaction and selection techniques

Correlation between cancer cachexia and immune-related adverse events in HCC

Human adipose tissue: a new source for functional organoids

Metro lines double as freight highways during off-peak hours, Beijing study shows

Biomedical functions and applications of nanomaterials in tumor diagnosis and treatment: perspectives from ophthalmic oncology

3D imaging unveils how passivation improves perovskite solar cell performance

Enriching framework Al sites in 8-membered rings of Cu-SSZ-39 zeolite to enhance low-temperature ammonia selective catalytic reduction performance

AI-powered RNA drug development: a new frontier in therapeutics

Decoupling the HOR enhancement on PtRu: Dynamically matching interfacial water to reaction coordinates

Sulfur isn’t poisonous when it synergistically acts with phosphine in olefins hydroformylation

URI researchers uncover molecular mechanisms behind speciation in corals

Chitin based carbon aerogel offers a cleaner way to store thermal energy

Tracing hidden sources of nitrate pollution in rapidly changing rural urban landscapes

Viruses on plastic pollution may quietly accelerate the spread of antibiotic resistance

Three UH Rainbow Babies & Children’s faculty elected to prestigious American Pediatric Society

Tunnel resilience models unveiled to aid post-earthquake recovery

Satellite communication systems: the future of 5G/6G connectivity

Space computing power networks: a new frontier for satellite technologies

[Press-News.org] From a cryptic genetic element in the human gut to a sensitive biomarker
Study shows that a mysterious plasmid that is highly prevalent in the human gastrointestinal tract could be used to identify faecal contamination and offer insights into the severity of intestinal diseases