(Press-News.org) A new DC-DC power converter is superior to previous designs and paves the way for more efficient, reliable and sustainable energy storage and conversion solutions. The Kobe University development can efficiently interface with a wide range of energy sources while enhancing system stability and simplicity at an unprecedented efficiency.
Electric power comes in two kinds, AC (alternating current) and DC (direct current). Famously, the question over which kind should be used for national power grids, the “Current War” of the late 19th century, got settled in favor of AC and most power plants today produce this kind. However, solar power, batteries and in particular those in electric vehicles, and computers all depend on DC, making lossy AC-to-DC conversion necessary. An alternative to this is the establishment of DC microgrids that integrate various renewable DC energy sources and storage devices and deliver energy directly to data centers and other DC appliances. This eliminates the need for AC-to-DC conversion, but it requires a device that can convert different voltages flexibly, as each DC device typically needs a different voltage and batteries provide different voltages depending on their charge and capacity. This also needs to be done bidirectionally, since batteries are used both as energy sources and sinks.
The power electronics researchers MISHIMA Tomokazu from Kobe University (Japan) and National Chung Hsing University (Taiwan) teamed up in a project for the “development of elemental technologies for high power density power distribution systems contributing to low-carbon data centers” and now achieved a significant breakthrough. “Our diverse team with expertise spanning across relevant disciplines allowed us to approach the problem from multiple perspectives, and our access to cutting-edge facilities and resources enabled us to conduct thorough experiments, simulations and analyses. Additionally, our group has a track record of successful collaborations with industry partners and other research institutions, providing valuable insights and support for our endeavors,” explains Kobe University student team member LIU Shiqiang.
They published the design principles, characteristics, and prototype evaluation in the journal IEEE Transactions on Power Electronics. Liu, who is the first author of the study, explains its main advantages over previous designs: “Its superior voltage ratio means it can efficiently interface with a wide range of energy sources, while the self-balancing of inductor currents enhances system stability and simplicity. Moreover, the asymmetrical duty limit control offers enhanced performance especially for electric vehicle-connected DC microgrids.”
The evaluation of their prototype showed an impressive efficiency of up to 98.3 percent. “This highlights the practical feasibility and scalability of the proposed topology for real-world applications, paving the way for future advancements in bidirectional DC-DC conversion technology,” comments Liu.
The team has filed for a patent for the design in Japan and is now preparing for its commercialization with UPE-Japan, a Kobe University startup. Naturally, they also want to keep improving their design, including for higher power densities and a wider variety of applications. Liu says, “Ultimately, our long-term objective is to contribute to the transition towards more efficient, reliable and sustainable energy storage and conversion solutions, particularly in the context of electric vehicles and renewable energy integration.”
This research was conducted in collaboration with researchers from the National Chung Hsing University.
Kobe University is a national university with roots dating back to the Kobe Commercial School founded in 1902. It is now one of Japan’s leading comprehensive research universities with nearly 16,000 students and nearly 1,700 faculty in 10 faculties and schools and 15 graduate schools. Combining the social and natural sciences to cultivate leaders with an interdisciplinary perspective, Kobe University creates knowledge and fosters innovation to address society’s challenges.
END
A flexible and efficient DC power converter for sustainable-energy microgrids
2024-04-19
ELSE PRESS RELEASES FROM THIS DATE:
Key protein regulates immune response to viruses in mammal cells
2024-04-19
Researchers have revealed the regulatory mechanism of a specific protein that plays a key role in balancing the immune response triggered by viral infections in mammal cells. These findings could help drive the development of antiviral therapies and nucleic acid medicines to treat genetic disorders.
For cells to protect themselves from viral infections, a series of immune responses typically occur, including programmed cell death called apoptosis and interferon signaling. While apoptosis is a normal process, which occurs with or without the presence ...
Development of organic semiconductors featuring ultrafast electrons
2024-04-19
Professors Kimoon Kim and Ji Hoon Shim along with Dr. Yeonsang Lee from the Department of Chemistry at Pohang University of Science and Technology (POSTECH) and Professor Jun Sung Kim from POSTECH’s Department of Physics and the Center for Artificial Low Dimensional Electronic Systems at the Institute for Basic Science created conducting two-dimensional polymers exhibiting electron mobility comparable to graphene. Their research has been featured in the online edition of Chem, an international chemistry journal.
Graphene, called a ...
Cancer is a disease of aging, but studies of older adults sorely lacking
2024-04-19
A systemic review of the current body of research shows that investigators have inadequately addressed the intersection of aging, health disparities, and cancer outcomes among older adults. This is the conclusion of a new paper published in the Journal of the American Geriatrics Society, and led by Nikesha Gilmore, PhD, a member of Wilmot Cancer Institute at the University of Rochester.
As the population of survivors of cancer 65 and older will likely double in size during the next two decades, the review reveals an urgent need for ...
Dietary treatment more effective than medicines in IBS
2024-04-19
Dietary treatment is more effective than medications in irritable bowel syndrome (IBS). These are the findings of a study conducted at the University of Gothenburg. With dietary adjustments, more than seven out of ten patients had significantly reduced symptoms.
Irritable bowel syndrome (IBS) is a common diagnosis that causes abdominal pain, gas and abdominal bloating, diarrhea, and constipation, in various combinations and with varying degrees of severity.
Treatment often consists of dietary advice such as eating small and frequent meals and avoiding excessive intake of food triggers such as coffee, alcohol and fizzy drinks. Patients may also be given medications to improve specific ...
Silent flight edges closer to take off, according to new research
2024-04-19
The study, published today in Journal of Fluid Mechanics, reveals for the first time how noise is generated and propagated from these engines, technically known as boundary layer ingesting (BLI) ducted fans. BLI ducted fans are similar to the large engines found in modern airplanes but are partially embedded into the plane's main body instead of under the wings. As they ingest air from both the front and from the surface of the airframe, they don't have to work as hard to move the plane, so it burns ...
Why can zebrafish regenerate damaged heart tissue, while other fish species cannot?
2024-04-19
A heart attack will leave a permanent scar on a human heart, yet other animals, including some fish and amphibians, can clear cardiac scar tissue and regrow damaged muscle as adults.
Scientists have sought to figure out how special power works in hopes of advancing medical treatments for human cardiac patients, but the great physiological differences between fish and mammals make such inquiries difficult.
So University of Utah biologists, led by assistant professor Jamie Gagnon, tackled the problem ...
Keck School of Medicine of USC orthopaedic surgery chair elected as 2024 AAAS fellow
2024-04-19
The American Association for the Advancement of Science (AAAS) has elected surgeon-researcher Jay Lieberman, MD, chair and professor of orthopaedic surgery at the Keck School of Medicine of USC, among its class of 2024 fellows.
The AAAS is the world’s oldest and largest general science organization and the publisher of Science, a top peer-reviewed academic journal. Election as a fellow is a lifetime honor — and one of the AAAS’s highest — signaling extraordinary achievement in the advancement or application of science.
Lieberman ...
Returning rare earth element production to the United States
2024-04-18
WEST LAFAYETTE, Ind. — ReElement Technologies on Thursday (April 18) signed an exclusive license to use patented Purdue University technologies to domestically refine and sell minerals critical in manufacturing modern, high-tech products for commercial and industrial use.
The license was signed during the Purdue Innovates Startup and Technology Expo 2024 at the Purdue University Memorial Union.
Sourcing rare earth and critical battery elements
Rare earth elements are foundational essentials in permanent ...
University of Houston Professor Kaushik Rajashekara elected International Fellow of the Engineering Academy of Japan
2024-04-18
Kaushik Rajashekara, Distinguished Professor of Engineering at the University of Houston Cullen College of Engineering, continues to receive recognition and awards on a global scale. The man who ushered in the era of electric cars, working on the General Motors EV1 in 1995 when he was a Technical Fellow there, has been elected an International Fellow of the Engineering Academy of Japan, recognized for his contributions to power conversion and, of course, electrification of transportation.
According to the academy, Rajashekara’s ...
Solving antibiotic and pesticide resistance with infectious worms
2024-04-18
To study how parasites evolve to break the defenses of their hosts, the National Institutes of Health has granted UC Riverside nematologist Simon “Niels” Groen a $1.9 million Outstanding Investigator Award.
Roundworm parasites infect humans, livestock, and crop plants. Insights into why certain worms can evade host immune protections could help preempt a ticking time bomb: the decreasing effectiveness of pesticides and antibiotics for infections.
Bacterial, fungal, and parasite resistance to drugs and pesticides is making it harder, and sometimes impossible, to treat common infections ...