PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Update on the STING signaling pathway in developing nonalcoholic fatty liver disease

Update on the STING signaling pathway in developing nonalcoholic fatty liver disease
2024-05-24
(Press-News.org)

Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver condition worldwide, affecting about 25% of the global population due to the increasing rates of obesity and metabolic syndrome. NAFLD encompasses a spectrum of liver conditions ranging from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), which can progress to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite its prevalence, there are limited effective treatment options available. Inflammation driven by metabolic disturbances is a key factor in the development and progression of NAFLD. Recent research has highlighted the role of the stimulator of interferon genes (STING) signaling pathway in mediating hepatic inflammation and metabolic disorders, making it a potential target for therapeutic intervention.

 

The pathogenesis of NAFLD is closely linked to the innate immune system. Hepatic lipid accumulation leads to oxidative stress, endoplasmic reticulum (ER) stress, and autophagy dysregulation in hepatocytes. These stressed hepatocytes release damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) on liver-resident immune cells such as Kupffer cells. This recognition activates the immune cells, triggering the release of pro-inflammatory cytokines and chemokines that recruit additional immune cells, including neutrophils, monocytes, natural killer (NK) cells, and NKT cells, to the liver. This immune cell infiltration exacerbates hepatic inflammation and injury. Moreover, gut microbiota dysbiosis and increased intestinal permeability allow bacterial products such as lipopolysaccharides (LPS) to enter the liver through the portal vein, further stimulating inflammatory responses via Toll-like receptors (TLRs).

 

STING is a critical regulator of the innate immune response to cytoplasmic DNA. Located in the ER, STING is activated upon binding to cyclic dinucleotides like cyclic GMP-AMP (cGAMP), produced by the enzyme cyclic GMP-AMP synthase (cGAS) in response to cytoplasmic DNA detection. Activated STING translocates to the Golgi apparatus, where it recruits and activates TANK-binding kinase 1 (TBK1), which in turn phosphorylates interferon regulatory factor 3 (IRF3). Phosphorylated IRF3 dimerizes and translocates to the nucleus, inducing the expression of type I interferons and other pro-inflammatory cytokines. The STING pathway also activates the NF-κB signaling cascade, further promoting inflammation.

 

The STING pathway's role in NAFLD progression is multifaceted. High-fat diet-induced NAFLD has been associated with increased expression of STING in liver macrophages and hepatocytes. This elevation in STING activity leads to enhanced production of pro-inflammatory cytokines and chemokines, contributing to hepatic inflammation and fibrosis. Mitochondrial DNA (mtDNA) released from damaged hepatocytes can also activate the STING pathway, exacerbating liver injury and promoting lipid accumulation. In NASH, STING activation has been shown to influence lipid metabolism by increasing the expression of enzymes involved in lipid synthesis while decreasing those involved in lipid breakdown, leading to hepatic steatosis.

 

Given its central role in mediating hepatic inflammation and metabolic disturbances, the STING pathway presents several therapeutic targets for NAFLD. Pharmacological inhibitors of STING, such as C176, have demonstrated efficacy in reducing liver inflammation and improving metabolic parameters in preclinical models. Targeting STING interactions with various immune cells, including macrophages, dendritic cells, NK cells, and T cells, offers new avenues for drug development. Modulating these pathways can potentially ameliorate hepatic inflammation, insulin resistance, and lipid dysregulation, which are critical in NAFLD pathogenesis. Furthermore, targeting the cGAS-STING pathway might not only alleviate liver-specific symptoms but also address systemic metabolic dysfunctions associated with NAFLD.

 

The STING signaling pathway is a pivotal component in the inflammatory and metabolic disturbances observed in NAFLD. Its regulation of innate immune responses and involvement in metabolic pathways underscore its significance in disease progression. Developing therapeutic strategies targeting STING and its associated immune mechanisms holds considerable promise for managing and potentially reversing NAFLD. Continued research into STING inhibitors and their effects on liver inflammation and metabolism is essential to address the growing global burden of NAFLD effectively.

 

Full text

https://www.xiahepublishing.com/2310-8819/JCTH-2023-00197

 

The study was recently published in the Journal of Clinical and Translational Hepatology.

The Journal of Clinical and Translational Hepatology (JCTH) is owned by the Second Affiliated Hospital of Chongqing Medical University and published by XIA & HE Publishing Inc. JCTH publishes high quality, peer reviewed studies in the translational and clinical human health sciences of liver diseases. JCTH has established high standards for publication of original research, which are characterized by a study’s novelty, quality, and ethical conduct in the scientific process as well as in the communication of the research findings. Each issue includes articles by leading authorities on topics in hepatology that are germane to the most current challenges in the field. Special features include reports on the latest advances in drug development and technology that are relevant to liver diseases. Regular features of JCTH also include editorials, correspondences and invited commentaries on rapidly progressing areas in hepatology. All articles published by JCTH, both solicited and unsolicited, must pass our rigorous peer review process.

Follow us on X: @xiahepublishing

Follow us on LinkedIn: Xia & He Publishing Inc.

END


[Attachments] See images for this press release:
Update on the STING signaling pathway in developing nonalcoholic fatty liver disease Update on the STING signaling pathway in developing nonalcoholic fatty liver disease 2 Update on the STING signaling pathway in developing nonalcoholic fatty liver disease 3

ELSE PRESS RELEASES FROM THIS DATE:

Autonomous medical intervention extends ‘golden hour’ for traumatic injuries with emergency air transport

Autonomous medical intervention extends ‘golden hour’ for traumatic injuries with emergency air transport
2024-05-24
For the first time, a closed loop, autonomous intervention nearly quadrupled the “golden hour” during which surgeons could save the life of a large animal with internal traumatic bleeding while in emergency ground and air transport. This breakthrough in trauma care, announced today in Intensive Care Medicine Experimental by physician-scientists at the University of Pittsburgh School of Medicine and funded by the U.S. Department of Defense, has enormous potential for saving the lives of traumatically injured ...

More than spins: Exploring uncharted territory in quantum devices

More than spins: Exploring uncharted territory in quantum devices
2024-05-24
Many of today’s quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the ‘0’ and the ‘1’. However, spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations. In a new publication in Physical Review Letters, researchers in Amsterdam demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state. Quantum devices use the quirky behaviour of quantum ...

SG ramps up cancer fight with S$50 million in national grant funding for precision oncology

2024-05-24
Singapore, 24 May 2024 – Two multi-institution and multidisciplinary Singapore teams of clinician-scientists and researchers have been awarded grants of S$25 million each, by the Singapore Ministry of Health through the NMRC Office, MOH Holdings Pte Ltd, under the NMRC Open Fund-Large Collaborative Grant (OF-LCG) programme. The S$50 million support for cancer research establishes the SYMPHONY 2.0 and Colo-SCRIPT research programmes to drive precision oncology research in Singapore aimed at improving the understanding, diagnosis and treatment of lymphoma and colorectal cancer. Led by the ...

Autophagy in pancreatitis

Autophagy in pancreatitis
2024-05-24
Researchers are exploring a new potential avenue for pancreatitis treatment: autophagy, a cellular recycling process. Autophagy helps maintain healthy pancreatic acinar cells by removing damaged organelles like mitochondria and the endoplasmic reticulum (ER). A new review published in eGastroenterology highlights the link between defective autophagy and pancreatitis. Impaired autophagy contributes to pancreatitis by allowing damaged organelles to accumulate within acinar cells. This accumulation disrupts cellular function and can ultimately lead to cell death. "Autophagy plays a vital role in keeping pancreatic acinar cells healthy," ...

To 6G and beyond: Penn engineers unlock the next generation of wireless communications

To 6G and beyond: Penn engineers unlock the next generation of wireless communications
2024-05-24
In the early 2010s, LightSquared, a multibillion-dollar startup promising to revolutionize cellular communications, declared bankruptcy. The company couldn’t figure out how to prevent its signals from interfering with those of GPS systems.  Now, Penn Engineers have developed a new tool that could prevent such problems from ever happening again: an adjustable filter that can successfully prevent interference, even in higher-frequency bands of the electromagnetic spectrum. “I ...

USF researcher using VR to map the brain, understand and treat disorders such as autism

USF researcher using VR to map the brain, understand and treat disorders such as autism
2024-05-24
TAMPA, Fla. (May 24, 2024) – Through high-tech imaging and virtual reality, a University of South Florida medical engineering professor is creating a detailed map of the brain that can be used to better understand developmental disorders, such as autism, and provide earlier, more effective treatments for brain injuries and diseases. Funded by a $3.3 million grant from the National Institutes of Health, George Spirou is expanding on his four decades of brain research to focus on the part of the brain that ...

Semaglutide significantly reduces risk of major kidney disease events, cardiovascular outcomes and mortality in patients with type 2 diabetes and chronic kidney disease, groundbreaking study reveals

2024-05-24
Semaglutide significantly reduces risk of major kidney disease events, cardiovascular outcomes and mortality in patients with type 2 diabetes and chronic kidney disease, groundbreaking study reveals A pioneering study has demonstrated that semaglutide significantly reduces the risk of major kidney disease events, cardiovascular outcomes, and all-cause mortality in patients with type 2 diabetes and chronic kidney disease.1 The landmark trial, presented today at the 61st ERA Congress, will pave the way for new treatment strategies and ...

Unveiling a novel AAK1 inhibitor: How chemical proteomics unlocked therapeutic potential

Unveiling a novel AAK1 inhibitor: How chemical proteomics unlocked therapeutic potential
2024-05-24
Enhancing drug development for life-threatening diseases like cancer hinges on a deep understanding of protein kinases, making it a focal point for researchers. These enzymes, encoded by more than 500 human genes, serve as critical players in cellular signaling pathways. However, if these signals are dysregulated, they can disrupt the normal cellular mechanisms, leading to diseases such as cancer. Protein kinase inhibitors have therefore provided a promising avenue in therapeutic intervention to disrupt the aberrant signaling ...

Novel organic photoredox catalysts with enhanced stability and recyclability

Novel organic photoredox catalysts with enhanced stability and recyclability
2024-05-24
In recent years, global environmental concerns have prompted a shift toward eco-friendly manufacturing in the field of organic synthetic chemistry. In this regard, research into photoredox catalytic reactions, which use light to initiate redox or reduction-oxidation reactions via a photoredox catalyst, has gained significant attention. This approach reduces the reliance on harsh and toxic reagents and uses visible light, a clean energy source. A key research area has been the development of recycling methods for photocatalysts, which offer both economic and environmental benefits. Photocatalysts use light to accelerate a chemical reaction without getting consumed in the process, and photoredox ...

Imperceptible sensors made from ‘electronic spider silk’ can be printed directly on human skin

Imperceptible sensors made from ‘electronic spider silk’ can be printed directly on human skin
2024-05-24
Researchers have developed a method to make adaptive and eco-friendly sensors that can be directly and imperceptibly printed onto a wide range of biological surfaces, whether that’s a finger or a flower petal. The method, developed by researchers from the University of Cambridge, takes its inspiration from spider silk, which can conform and stick to a range of surfaces. These ‘spider silks’ also incorporate bioelectronics, so that different sensing capabilities can be added to the ‘web’. The fibres, at least 50 times smaller than a ...

LAST 30 PRESS RELEASES:

Financial incentives found to help people quit smoking, including during pregnancy

Rewards and financial incentives successfully help people to give up smoking

HKU ecologists reveal key genetic insights for the conservation of iconic cockatoo species

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

[Press-News.org] Update on the STING signaling pathway in developing nonalcoholic fatty liver disease