PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Improved prime editing system makes gene-sized edits in human cells at therapeutic levels

The gene-editing approach uses prime editors and evolved enzymes called recombinases, and could pave the way to effective one-size-fits-all gene therapies for diseases such as cystic fibrosis.

2024-06-10
(Press-News.org)

Scientists at the Broad Institute of MIT and Harvard have improved a gene-editing technology that is now capable of inserting or substituting entire genes in the genome in human cells efficiently enough to be potentially useful for therapeutic applications.

The advance, from the lab of Broad core institute member David Liu, could one day help researchers develop a single gene therapy for diseases such as cystic fibrosis that are caused by one of hundreds or thousands of different mutations in a gene. Using this new approach, they would insert a healthy copy of the gene at its native location in the genome, rather than having to create a different gene therapy to correct each mutation using other gene-editing approaches that make smaller edits.  

The new method uses a combination of prime editing, which can directly make a wide range of edits up to about 100 or 200 base pairs, and newly developed recombinase enzymes that efficiently insert large pieces of DNA thousands of base pairs in length at specific sites in the genome. This system, called eePASSIGE, can make gene-sized edits several times more efficiently than other similar methods, and is reported in Nature Biomedical Engineering.

“To our knowledge this is one of the first examples of programmable targeted gene integration in mammalian cells that satisfies the main criteria for potential therapeutic relevance,” said Liu, who is senior author of the study, the Richard Merkin Professor and director of the Merkin Institute of Transformative Technologies in Healthcare at the Broad, a professor at Harvard University and a Howard Hughes Medical Institute investigator. “At these efficiencies, we expect that many if not most loss-of-function genetic diseases could be ameliorated or rescued, if the efficiency we observe in cultured human cells can be translated into a clinical setting.”

Graduate student Smriti Pandey and postdoctoral researcher Daniel Gao, both in Liu’s group, were co-first authors on the study, which was also a collaboration with Mark Osborn’s group at the University of Minnesota and Elliot Chaikof’s group at the Beth Israel Deaconess Medical Center.

“This system offers promising opportunities for cell therapies where it can be used to precisely insert genes into cells outside of the body before administering them to patients to treat disease, among other applications,” Pandey said. 

“It’s exciting to see the high efficiency and versatility of eePASSIGE, which could enable a new category of genomic medicines,” added Gao. “We also hope that it will be a tool that scientists from across the research community can use to study basic biological questions.”

Prime improvements

Many scientists have used prime editing to efficiently install changes to DNA that are up to dozens of base pairs in length, sufficient to correct the vast majority of known pathogenic mutations. But introducing entire healthy genes, often thousands of base pairs long, in their native location in the genome has been a long-standing goal of the gene-editing field. Not only could this potentially treat many patients regardless of which mutation they have in a disease-causing gene, but it would also preserve the surrounding DNA sequences, which would increase the likelihood that the newly installed gene is properly regulated, rather than expressed too much, too little, or at the wrong time.

In 2021, Liu’s lab reported a key step towards this goal and developed a prime editing approach called twinPE that installed recombinase “landing sites” in the genome, and then used natural recombinase enzymes such as Bxb1 to catalyze the insertion of new DNA into the prime edited target sites. 

The biotech company Prime Medicine, co-founded by Liu, soon began using this technology, which they called PASSIGE (prime-editing-assisted site-specific integrase gene editing), to develop treatments for genetic diseases. 

PASSIGE installs edits in only a modest fraction of cells, which is enough to treat some but probably not most genetic diseases that result from the loss of a functioning gene. So Liu’s team, in the new work reported today, set out to boost PASSIGE’s editing efficiency. They found that the recombinase enzyme Bxb1 was the culprit in limiting the efficiency of PASSIGE. They then used a tool previously developed by Liu’s group called PACE (phage-assisted continuous evolution) to rapidly evolve more efficient versions of Bxb1 in the lab. 

The resulting newly evolved and engineered Bxb1 variant (eeBxb1) improved the eePASSIGE method to integrate an average of 30 percent of gene-sized cargo in mouse and human cells, four times more than the original technique and about 16 times more than another recently published method called PASTE.

“The eePASSIGE system provides a promising foundation for studies integrating healthy gene copies at sites of our choosing in cell and animal models of genetic diseases to treat loss-of-function disorders,” Liu said. “We hope this system will prove to be an important step towards realizing the benefits of targeted gene integration for patients.”

With this goal in mind, Liu’s team is now working on combining eePASSIGE with delivery systems such as engineered virus-like particles (eVLPs) that may overcome hurdles that have traditionally limited therapeutic delivery of gene editors in the body.

 

Funding:

This work was supported in part by the National Institutes of Health, the Bill and Melinda Gates Foundation, and the Howard Hughes Medical Institute.

 

Paper cited:

Pandey S, Gao XD, et al. Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing. Nature Biomedical Engineering. Online June 10, 2024. DOI:10.1038/s41551-024-01227-1.

 

About Broad Institute of MIT and Harvard

Broad Institute of MIT and Harvard was launched in 2004 to empower this generation of creative scientists to transform medicine. The Broad Institute seeks to describe the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods and data openly to the entire scientific community.

Founded by MIT, Harvard, Harvard-affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide.

END



ELSE PRESS RELEASES FROM THIS DATE:

Lung organoids unveil secret: How pathogens infect human lung tissue

Lung organoids unveil secret: How pathogens infect human lung tissue
2024-06-10
How do pathogens invade the lungs? Using human lung microtissues, a team at the Biozentrum of the University of Basel has uncovered the strategy used by a dangerous pathogen. The bacterium targets specific lung cells and has developed a sophisticated strategy to break through the lungs’ line of defense. Earlier this year, the WHO published a list of twelve of the world’s most dangerous bacterial pathogens that are resistant to multiple antibiotics and pose a grave threat to human health. This list includes Pseudomonas aeruginosa, a much-feared nosocomial pathogen ...

The solar system may have passed through dense interstellar clouds 2 million years ago, altering Earth’s climate

2024-06-10
Around two million years ago, Earth was a very different place, with our early human ancestors living alongside saber-toothed tigers, mastodons, and enormous rodents. And, depending on where they were, they may have been cold: Earth had fallen into a deep freeze, with multiple ice ages coming and going until about 12,000 years ago. Scientists theorize that ice ages occur for a number of reasons, including the planet’s tilt and rotation, shifting plate tectonics, volcanic eruptions, and carbon dioxide levels in the atmosphere. ...

Miniaturizing a laser on a photonic chip

Miniaturizing a laser on a photonic chip
2024-06-10
Lasers have revolutionized the world since the 60’s and are now indispensable in modern applications, from cutting-edge surgery and precise manufacturing to data transmission across optical fibers. But as the need for laser-based applications grows, so do challenges. For example, there is a growing market for fiber lasers, which are currently used in industrial cutting, welding, and marking applications. Fiber lasers use an optical fiber doped with rare-earth elements (erbium, ytterbium, neodymium etc) as their optical gain source (the part that produces the laser’s light). They emit high-quality beams, they have high power output, and they are efficient, ...

Study: Physical activity in the evening lowers blood sugar levels

2024-06-10
ROCKVILLE, Md.— New research reveals that moderate to vigorous physical activity in the evening for sedentary adults with overweight and obesity is most beneficial in lowering daily blood sugar levels, according to a study published in Obesity, The Obesity Society’s (TOS) flagship journal. Experts explain that it has been well established that moderate to vigorous physical activity enhances glucose homeostasis in adults with overweight and obesity who are at higher risk of developing insulin resistance. ...

Experts develop nutritional recommendations for patients treated with anti-obesity medications

2024-06-10
ROCKVILLE, Md.— Individuals treated with anti-obesity medications generally experience reduced appetite, which typically leads to reduced food intake. As a result, dietary quality becomes more important because nutritional needs must be met within the context of eating less. To improve this process, medical experts have developed a list of evidence-based nutritional recommendations to assist clinicians treating patients with anti-obesity medications, according to a review published in the journal Obesity, The Obesity Society’s (TOS) flagship journal. “Our evidence-based review aims to equip clinicians with knowledge ...

Peers crucial in shaping boys’ confidence in math skills

2024-06-10
Boys are good at math, girls not so much? A study from the University of Zurich has analyzed the social mechanisms that contribute to the gender gap in math confidence. While peer comparisons seem to play a crucial role for boys, girls’ subjective evaluations are more likely to be based on objective performance. Research has shown that in Western societies, the average secondary school girl has less confidence in her mathematical abilities than the average boy of the same age. At the same time, no significant difference ...

Fixing excess carbon dioxide: biocatalyst-driven carboxylation under mild conditions

Fixing excess carbon dioxide: biocatalyst-driven carboxylation under mild conditions
2024-06-10
Carbon capture and utilization technologies for the conversion of carbon dioxide into carboxylic acids have garnered attention recently, with researchers from Tokyo Tech recently demonstrating a biocatalyzed carboxylation reaction of not only natural substrate, pyruvate, but also unnatural one, 2-ketoglutarate, using Thermoplasma acidophilum NADP+- malic enzyme under mild reaction conditions. The proposed strategy can be tailored for the selective synthesis through carbon dioxide fixation reactions. Removing the excess carbon dioxide (CO2) from the environment is not the end goal of the decarbonization process necessary to ...

Lung cancer screening prolongs lives in real-world study

2024-06-10
Among US veterans diagnosed with lung cancer through the Veterans Health Administration healthcare system, those who underwent screening before diagnosis were more likely to be diagnosed with earlier stage disease and had a higher cure rate than those who had not been screened. The findings come from an observational study published by Wiley online in CANCER, a peer-reviewed journal of the American Cancer Society. Lung cancer is the leading cause of cancer deaths worldwide, and most patients are diagnosed at ...

New study reveals links between social anxiety, depression and suicidal thoughts in adolescents

2024-06-10
Peer-reviewed – Observational study - People  Adolescents who experience higher levels of social anxiety symptoms are more likely to report increased suicidal thoughts and other depressive symptoms two years later, according to new research.  The University of East Anglia-led study sheds light on the pressing need for early interventions to address society anxiety in young people.  Lead author Dr Kenny Chiu, Clinical Lecturer in Clinical Psychology at UEA’s Department of Clinical Psychology and Psychological Therapies, said: “Social Anxiety Disorder ...

Disturbed blood flow can damage the vessel wall in cases of aortic dilation

Disturbed blood flow can damage the vessel wall in cases of aortic dilation
2024-06-10
Abnormal blood flow in the aorta is linked to inflammation and breakdown of the vessel wall in conditions where the aorta is dilated. This is shown in a study led by researchers at Linköping University. The findings can contribute to better diagnosis and open up new ways to assess the risk of serious and usually fatal complications, such as rupture of the aorta.  All blood in the body passes through the heart about once a minute. With every heartbeat, blood from the heart is pumped up into the aorta. Dilation can occur in all parts ...

LAST 30 PRESS RELEASES:

Cooler heads prevail: New research reveals best way to prevent dogs from overheating

UC Riverside medical school develops new curriculum to address substance use crisis

Food fussiness a largely genetic trait from toddlerhood to adolescence

Celebrating a century of scholarship: Isis examines the HSS at 100

Key biomarkers identified for predicting disability progression in multiple sclerosis

Study: AI could lead to inconsistent outcomes in home surveillance

Study: Networks of Beliefs theory integrates internal & external dynamics

Vegans’ intake of protein and essential amino acids is adequate but ultra-processed products are also needed

Major $21 million Australian philanthropic investment to bring future science into disease diagnosis

Innovating alloy production: A single step from ores to sustainable metals

New combination treatment brings hope to patients with advanced bladder cancer

Grants for $3.5M from TARCC fund new Alzheimer’s disease research at UTHealth Houston

UTIA researchers win grant for automation technology for nursery industry

Can captive tigers be part of the effort to save wild populations?

The Ocean Corporation collaborates with UTHealth Houston on Space Medicine Fellowship program

Mysteries of the bizarre ‘pseudogap’ in quantum physics finally untangled

Study: Proteins in tooth enamel offer window into human wellness

New cancer cachexia treatment boosts weight gain and patient activity

Rensselaer researcher receives $3 million grant to explore gut health

Elam named as a Fellow of the Electrochemical Society

Study reveals gaps in access to long-term contraceptive supplies

Shining a light on the roots of plant “intelligence”

Scientists identify a unique combination of bacterial strains that could treat antibiotic-resistant gut infections

Pushing kidney-stone fragments reduces stones’ recurrence

Sweet success: genomic insights into the wax apple's flavor and fertility

New study charts how Earth’s global temperature has drastically changed over the past 485 million years, driven by carbon dioxide

Scientists say we have enough evidence to agree global action on microplastics

485 million-year temperature record of Earth reveals Phanerozoic climate variability

Atmospheric blocking slows ocean-driven glacier melt in Greenland

Study: Over nearly half a billion years, Earth’s global temperature has changed drastically, driven by carbon dioxide

[Press-News.org] Improved prime editing system makes gene-sized edits in human cells at therapeutic levels
The gene-editing approach uses prime editors and evolved enzymes called recombinases, and could pave the way to effective one-size-fits-all gene therapies for diseases such as cystic fibrosis.