PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

El Niño forecasts extended to 18 months with innovative physics-based model

El Niño forecasts extended to 18 months with innovative physics-based model
2024-06-26
(Press-News.org) Across Asia, the Pacific Ocean, and the Americas, El Niño Southern Oscillation (ENSO) brings variations in winds, weather, and ocean temperature that can cause droughts, floods, crop failures, and food shortages. Recently, the world has experienced a major El Niño event in 2023-2024, dramatically impacting weather, climate, ecosystems, and economies globally. By developing an innovative modeling approach, researchers from the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawai‘i at Mānoa are now able to forecast ENSO events up to 18 months ahead of time—significantly improving conventional climate model forecasting.  

Their findings, which meld insights into the physics of the ocean and atmosphere with predictive accuracy, were published today in Nature.

“We have developed a new conceptual model – the so-called extended nonlinear recharge oscillator (XRO) model – that significantly improves predictive skill of ENSO events at over one year in advance, better than global climate models and comparable to the most skillful AI forecasts,” said Sen Zhao, lead author of the study and an assistant researcher in SOEST. “Our model effectively incorporates the fundamental physics of ENSO and ENSO’s interactions with other climate patterns in the global oceans that vary from season to season.”

Scientists have been working for decades to improve ENSO predictions given its global environmental and socioeconomic impacts. Traditional operational forecasting models have struggled to successfully predict ENSO with lead times exceeding one year.

AI helps power new forecast 

Recent advancements in artificial intelligence (AI) have pushed these boundaries, achieving accurate predictions up to 16-18 months in advance. However, the “black box” nature of AI models has precluded attribution of this accuracy to specific physical processes. Not being able to explain the source of the predictability in the AI models results in low confidence that these predictions will be successful for future events as the Earth continues to warm, changing the currents in the oceans and atmosphere.

“Unlike the 'black box' nature of AI models, our XRO model offers a transparent view into the mechanisms of the equatorial Pacific recharge-discharge physics and its interactions with other climate patterns outside of tropical Pacific,” explained Fei-Fei Jin, the corresponding author and professor of atmospheric sciences in SOEST. “The initial states of the extratropical Pacific, tropical Indian Ocean, and Atlantic enhance ENSO predictability in distinct seasons. For the first time, we are able to robustly quantify their impact on ENSO predictability, thus deepening our knowledge of ENSO physics and its sources of predictability.”

Climate model shortcomings, improvements

“Our findings also identify shortcomings in the latest generation of climate models that lead to their failure in predicting ENSO accurately,” said Malte Stuecker, assistant professor of oceanography in SOEST and study co-author. “To improve ENSO predictions, climate models must correctly capture the key physics of ENSO and additionally, three compounding aspects of other climate patterns in the global oceans: accurate knowledge of the state of each of these climate patterns when the ENSO forecasts starts, the correct seasonally varying “ocean memory” of each of these climate patterns, and correct representations of how each of these other climate patterns affect ENSO in different seasons.”

“Different sources of predictability lead to distinct ENSO event evolutions,” said Philip Thompson, associate professor of oceanography in SOEST and co-author of the study. “We are now able to provide skillful, long lead time predictions of this ‘ENSO diversity’, which is critical as different flavors of ENSO have very different impacts on global climate and individual communities.”

“In addition to El Niño, the new XRO model also improves predictability of other climate variabilities in tropical Indian and Atlantic Oceans, such as the Indian Ocean Dipole, which can significantly alter the local and global weather patterns beyond the impacts of El Niño,” added Zhao.

Future directions

The implications of this research are far-reaching, offering prospects for more accurate and longer lead time ENSO predictions and global climate model improvements. Though ENSO originates in the tropical Pacific, we can no longer think of it as a tropical Pacific Ocean problem only, either from a modeling and prediction perspective or from an observational perspective. The global tropics and the higher latitudes are integral to improving seasonal climate forecasts.

“By tracing model shortcomings and understanding these climate pattern interactions with our new conceptual XRO model, we can substantially refine our global climate models,” remarked Stuecker. “This paves the way for the next-generation of global climate models to incorporate these findings, improving our approach to predicting and mitigating the effects of climate variability and change. Such advancements are crucial for societal preparations and adaptations to climate-related hazards.”

The UH team of researchers was rounded out with contributing authors from Columbia University, NOAA, Korea, and China.

END

[Attachments] See images for this press release:
El Niño forecasts extended to 18 months with innovative physics-based model El Niño forecasts extended to 18 months with innovative physics-based model 2 El Niño forecasts extended to 18 months with innovative physics-based model 3

ELSE PRESS RELEASES FROM THIS DATE:

Scientists discover genetic ‘off switch’ in legume plants that limits biological ability to source nutrients

Scientists discover genetic ‘off switch’ in legume plants that limits biological ability to source nutrients
2024-06-26
A genetic “off switch” that shuts down the process in which legume plants convert atmospheric nitrogen into nutrients has been identified for the first time by a team of international scientists. Legumes like beans, peas and lentils are unique among crops for their ability to interact with soil bacteria to convert or “fix” nitrogen into a usable form of nutrients. However, this energy-intensive biological process is reduced when nitrogen is already abundant in the soil either through natural processes or through the application of synthetic ...

The Frontiers Planet Prize announces 2024 International Champions

2024-06-26
The Frontiers Planet Prize today (26 June) announced its 2024 International Champions. The Prize recognizes and rewards scientists whose groundbreaking research accelerates solutions to help humanity remain safely within the nine planetary boundaries. The three winning scientists, Dr Pedro Jaureguiberry, Instituto Multidisciplinario de Biología Vegetal (Argentina), Prof Dr Peter Haase, Senckenberg Society for Nature Research (Germany), and Prof Jason Rohr, University of Notre Dame (USA), were each awarded 1.1 million (USD) / 1 million (CHF) to support their research.  The International Champions award-winning research ...

Precision instrument bolsters efforts to find elusive dark energy

Precision instrument bolsters efforts to find elusive dark energy
2024-06-26
Dark energy — a mysterious force pushing the universe apart at an ever-increasing rate — was discovered 26 years ago, and ever since, scientists have been searching for a new and exotic particle causing the expansion. Pushing the boundaries of this search, University of California, Berkeley physicists have now built the most precise experiment yet to look for minor deviations from the accepted theory of gravity that could be evidence for such a particle, which theorists have dubbed a chameleon or symmetron. The experiment, which combines an atom interferometer for precise gravity ...

Overcoming challenges encountered by Spanish-speaking trauma patients

2024-06-26
Key Takeaways  Spanish-speaking patients who suffer traumatic injuries face gaps in their care once they leave the hospital, many with a high need for mental health services.  More than half of the patients studied reported food insecurity, transportation challenges, and needing help with utilities.   A novel care pathway developed by researchers can help connect these patients with needed services.  CHICAGO – Many trauma patients face a myriad of challenges when recovering from a traumatic injury, ...

Every walk you take: Promoting active and healthy ageing of citizens

Every walk you take: Promoting active and healthy ageing of citizens
2024-06-26
Promoting active and healthy ageing of citizens through a new mobile application that shows walking routes through green areas in Barcelona with data on geolocation, obstacles, pollution and weather in real time: this is the aim of the citizen science project Every Walk You Take, promoted by a team from the University of Barcelona. This initiative aims to promote physical activity and health among the over-fifty-five population through a new mobile-assisted health intervention (mHealth).   This innovative app, presented in an article published in Sustainability ...

Innovative research unveils link between depression and amygdala activity in rats

Innovative research unveils link between depression and amygdala activity in rats
2024-06-26
A significant new study published in the Cyborg Bionic Systems journal by Fanli Kong and colleagues sheds light on the intricate relationship between depression and brain activity, particularly focusing on the basolateral amygdala (BLA) in rats. This research offers compelling insights into how depression can alter neural circuits and could pave the way for new treatments. Depression is a debilitating mental health issue affecting millions worldwide and is known for symptoms like persistent sadness, loss of interest in enjoyable activities, and fatigue. While traditional treatments have focused on neurotransmitters in the brain, this study dives deeper into the brain’s structural ...

Navigating the fine line between performance and safety in sports: Insights from landing mechanics research

Navigating the fine line between performance and safety in sports: Insights from landing mechanics research
2024-06-26
The recent study by Datao Xu and his team at Ningbo University has unveiled important strategies that can be applied in athletic training and rehabilitation to curb the high rates of lower limb injuries. Their research meticulously analyzes the mechanics of single-leg landings—a common move in various sports—to propose enhanced landing techniques that not only aim to protect athletes but also improve their performance by enabling quicker recovery and continuation in sports activities. One of the study’s most significant contributions is its detailed exploration of the role of ankle dynamics in absorbing landing impacts. ...

Innovative electrospinning techniques revolutionize precise medicine through advanced medical devices

Innovative electrospinning techniques revolutionize precise medicine through advanced medical devices
2024-06-26
In a groundbreaking advancement that could reshape the landscape of precise medicine, researchers from the Beijing Institute of Technology and Rutgers University have unveiled a series of innovative electrospinning techniques capable of significantly enhancing the functionality and effectiveness of medical devices. This pioneering study, recently published in the Cyborg Bionic Systems journal, promises to revolutionize the creation and implementation of nano/microrobots, wearable/implantable biosensors, and organ-on-chip systems. Precise medicine, aimed at tailoring healthcare to individual patients ...

PLOS announces new publishing agreement with Colombian consortium

2024-06-26
SAN FRANCISCO —The Public Library of Science (PLOS) is pleased to announce a consortium agreement with Consorcio Colombia / Consortia facilitated by Accucoms, that allows joining member institutions to participate in PLOS’ three innovative publishing models across all 14 PLOS titles. The agreement provides researchers from affiliated institutions unlimited publishing privileges in PLOS journals without incurring fees. Eight Colombian institutions have joined the agreement in 2024 [1], and more institutions are expected to join in the following years. “Consorcio ...

New survey from NCCN finds cancer drug shortage management remains a moving target, impacting clinical trials

2024-06-26
PLYMOUTH MEETING, PA [June 26, 2024] — The National Comprehensive Cancer Network® (NCCN®)—a nonprofit alliance of leading cancer centers—is publishing new results for its latest survey on cancer drug shortages in the United States. This follows data published one year ago, and six months ago, illustrating how up to 93% of centers surveyed were experiencing shortages of the crucial chemotherapy carboplatin at its peak. In June 2023, 70% of centers surveyed were also lacking adequate supply for cisplatin. In the latest survey, only 11% of surveyed centers reported a shortage of carboplatin and 7% for cisplatin; but new concerns have emerged. “Critical ...

LAST 30 PRESS RELEASES:

Unexpected human behaviour revealed in prisoner's dilemma study: Choosing cooperation even after defection

Distant relatedness in biobanks harnessed to identify undiagnosed genetic disease

UCLA at ASTRO: Predicting response to chemoradiotherapy in rectal cancer, 2-year outcomes of MRI-guided radiotherapy for prostate cancer, impact of symptom self-reporting during chemoradiation and mor

Estimated long-term benefits of finerenone in heart failure

MD Anderson launches first-ever academic journal: Advances in Cancer Education & Quality Improvement

Penn Medicine at the 2024 ASTRO Annual Meeting

Head and neck, meningioma research highlights of University of Cincinnati ASTRO abstracts

Center for BrainHealth receives $2 million match gift from Adm. William McRaven (ret.), recipient of Courage & Civility Award

Circadian disruption, gut microbiome changes linked to colorectal cancer progression

Grant helps UT develop support tool for extreme weather events

Autonomous vehicles can be imperfect — As long as they’re resilient

Asteroid Ceres is a former ocean world that slowly formed into a giant, murky icy orb

McMaster researchers discover what hinders DNA repair in patients with Huntington’s Disease

Estrogens play a hidden role in cancers, inhibiting a key immune cell

A new birthplace for asteroid Ryugu

How are pronouns processed in the memory-region of our brain?

Researchers synthesize high-energy-density cubic gauche nitrogen at atmospheric pressure

Ancient sunken seafloor reveals earth’s deep secrets

Automatic speech recognition learned to understand people with Parkinson’s disease — by listening to them

Addressing global water security challenges: New study reveals investment opportunities and readiness levels

Commonly used drug could transform treatment of rare muscle disorder

Michael Frumovitz, M.D., posthumously honored with Julie and Ben Rogers Award for Excellence

NIH grant supports research to discover better treatments for heart failure

Clinical cancer research in the US is increasingly dominated by pharmaceutical industry sponsors, study finds

Discovery of 3,775-year-old preserved log supports ‘wood vaulting’ as a climate solution

Preterm births are on the rise, with ongoing racial and economic gaps

Menopausal hormone therapy use among postmenopausal women

Breaking the chain of intergenerational violence

Unraveling the role of macrophages in regulating inflammatory lipids during acute kidney injury

Deep underground flooding beneath arima hot springs: A potential trigger for the 1995 Kobe (Hyogo-Ken Nanbu) earthquake

[Press-News.org] El Niño forecasts extended to 18 months with innovative physics-based model