(Press-News.org) The process by which phages—viruses that infect and replicate within bacteria—enter cells has been studied for over 50 years. In a new study, researchers from the University of Illinois Urbana-Champaign and Texas A&M University have used cutting-edge techniques to look at this process at the level of a single cell.
“The field of phage biology has seen an explosion over the last decade because more researchers are realizing the significance of phages in ecology, evolution, and biotechnology,” said Ido Golding (CAIM/IGOH), a professor of physics. “This work is unique because we looked at phage infection at the level of individual bacterial cells.”
The process of phage infection involves the attachment of the virus to the surface of a bacterium. Following this, the virus injects its genetic material into the cell. After entering, a phage can either force the cell to produce more phages and eventually explode, a process called cell lysis, or the phage can integrate its genome into the bacterial one and remain dormant, a process called lysogeny. The outcome depends on how many phages are simultaneously infecting the cell. A single phage causes lysis, while infection by multiple phages results in lysogeny.
In the current study, the researchers wanted to ask whether the number of infecting phages that bind to the bacterial surface corresponds to the amount of viral genetic material that is injected into the cell. To do so, they fluorescently labeled both the protein shell of the phages and the genetic material inside. They then grew Escherichia coli, used different concentrations of infecting phages, and tracked how many of them were able to inject their genetic material into E. coli.
“We have known since the 70s that when multiple phages infect the same cell, it impacts the outcome of the infection. In this paper, we were able to take precise measurements unlike any study done so far,” Golding said.
The researchers were surprised to find that the entry of a phage’s genetic material could be impeded by the other coinfecting phages. They found that when there were more phages attached to the surface of the cell, relatively fewer of them were able to enter.
“Our data shows that the first stage of infection, phage entry, is an important step that was previously underappreciated,” Golding said. “We found that the coinfecting phages were impeding each other’s entry by perturbing the electrophysiology of the cell.”
The outermost layer of bacteria is constantly dealing with the movement of electrons and ions that are crucial for energy generation and transmitting signals in and out of the cell. Over the past decade, researchers have started realizing the importance of this electrophysiology in other bacterial phenomena, including antibiotic resistance. This paper opens a new avenue for research in bacterial electrophysiology—its role in phage biology.
“By influencing how many phages actually enter, these perturbations affect the choice between lysis and lysogeny. Our study also shows that entry can be impacted by environmental conditions such as the concentration of various ions,” Golding said.
The team is interested in improving their techniques to better understand the molecular underpinnings of phage entry.
“Even though the resolution of our techniques was good, what was happening at the molecular level was still largely invisible to us,” Golding said. “We are looking at using the Minflux system at the Carl R. Woese Institute for Genomic Biology. The plan is to examine the same process but apply a better experimental method. We’re hoping that this will help us find new biology.”
The study “Coinfecting phages impede each other’s entry into the cell” was published in Current Biology and can be found at https://doi.org/10.1016/j.cub.2024.05.032. The work was supported by the National Institutes of Health, the National Science Foundation, and the Alfred P. Sloan Foundation.
END
Coinfecting viruses impede each other’s ability to enter cells
2024-08-02
ELSE PRESS RELEASES FROM THIS DATE:
DART forward: Five papers shed new light on asteroids from world’s first planetary defense test
2024-08-02
In the months that followed NASA’s Double Asteroid Redirection Test (DART) mission, which sent a spacecraft to intentionally collide with an asteroid moonlet, the science team verified that kinetic impact was a viable deflection technique, proving one effective method of preventing future asteroid strikes on Earth.
Since then, researchers have continued studying data collected from the successful experiment, focusing specifically on surface features of the binary asteroid system, composed of moonlet Dimorphos and parent asteroid Didymos.
In recently published papers in Nature Communications, the team explored the geology of the asteroid system encountered in 2022 to characterize its ...
Feeling judged by your doctor? You might be right
2024-08-02
When an individual visits their doctor, they aren’t supposed to keep secrets. Unless patients are forthcoming about their symptoms, behaviors, and health-related beliefs, it’s hard for healthcare professionals to effectively diagnose and treat illnesses—or to advise and educate patients about how to take better care of themselves in the future.
There’s only one problem: new research from Stevens Institute of Technology shows that many people believe they may be judged if they share mistaken beliefs with their care team—and that doctors really do take strongly negative views of patients who disclose incorrect ...
nTIDE July 2024 Jobs Report: People with disabilities hold steady in labor market despite federal reserve's attempts to slow economy
2024-08-02
East Hanover, NJ – August 2, 2024 – Following significant gains since the post-pandemic lockdown, employment rates for people with disabilities have plateaued, remaining near historic high levels over the past year despite the Federal Reserve’s efforts to slow the economy, according to today’s National Trends in Disability Employment – semi-monthly update (nTIDE) issued by Kessler Foundation and the University of New Hampshire’s Institute on Disability (UNH-IOD).
Year-to-Year nTIDE Numbers (comparing July 2023 to July 2024)
Based on data from the U.S. Bureau of Labor Statistics ...
Dopamine physiology in the brain unveiled through cutting-edge brain engineering!
2024-08-02
□ DGIST (President Lee Kunwoo) Department of Brain Sciences Professor Lee Kwang and his team have discovered a new correlation between neural signaling in the brain and dopamine signaling in the striatum. The human brain requires fast neural signal processing in a short period of less than a second. Dopamine is known to have the strongest effect on brain neural signals, but the research team’s newly developed “optical neural chip-based multiple brain signal monitoring technology” shows that changes in dopamine signals within the physiological range do not affect brain neural signal ...
Precise package delivery in cells? Successful observation of endosome behavior provides new clues for disease treatment
2024-08-02
□ A team led by Professor Seo Dae-ha of the Department of Physics and Chemistry at DGIST (President Lee Kun-woo) has developed new real-time microscopy technology and successfully observed the behavior of “motor proteins”[1], which may hold the key to unraveling the efficient material transport strategy of cells. The research team used nanoparticle probe, high-resolution microscopy, and Fourier transform algorithm technologies to develop “Fourier transform-based plasmonic dark-field microscopy” (FT-pdf microscopy) with positional and angular accuracy comparable to electron microscopy, achieving the highest level of existing ...
Sustainable green energy innovation! Development of new technology for energy device that heals itself from damage incurred while generating electricity
2024-08-02
□ A team led by Professor Lee Joo-hyuk of the Department of Energy Engineering at DGIST (President Lee Kunwoo) has developed an ionic polyurethane-based triboelectric generator[1]with self-healing, biodegradable[2], and high electro-positive properties. The device has been designed as a green energy device that can minimize the impact on the environment by facilitating self-healing and biodegradability, while significantly enhancing power output performance through the use of ionic liquid. Based on these properties, it is expected to be used as a sustainable power source in next-generation soft electronic devices and wearable devices.
- ...
White Matter May Aid Recovery From Spinal Cord Injuries: Study
2024-08-02
Injuries, infection and inflammatory diseases that damage the spinal cord can lead to intractable pain and disability. Some degree of recovery may be possible. The question is, how best to stimulate the regrowth and healing of damaged nerves.
At the Vanderbilt University Institute of Imaging Science (VUIIS), scientists are focusing on a previously understudied part of the brain and spinal cord — white matter. Their discoveries could lead to treatments that restore nerve activity through the targeted delivery of electromagnetic stimuli or drugs.
As in the brain, the spinal cord is made up nerve cell bodies (gray matter), which process sensation and control voluntary movement, and ...
Reduction in folate intake linked to healthier aging in animal models
2024-08-02
August 1, 2024 - by Ashley Vargo - In a study published in Life Science Alliance, Texas A&M AgriLife Research scientists found that decreasing folate intake can support healthier metabolisms in aging animal models, challenging the conventional belief that high folate consumption universally benefits health.
The study was led by Michael Polymenis, Ph.D., professor and associate head of graduate programs in the Texas A&M College of Agriculture and Life Sciences Department of Biochemistry and Biophysics.
Michael Polymenis, Ph.D., principal investigator, ...
How America’s elites may hold the key to lowering murder rates
2024-08-02
COLUMBUS, Ohio – New crime laws, police funding and similar efforts may have some effect on homicide rates in the United States – but the biggest impact will come from the actions of our political and economic elites.
That’s the conclusion of historian Randolph Roth, author of the 2009 book American Homicide, in a new report he wrote for the Harry Frank Guggenheim Foundation.
Roth, who is a professor of history at The Ohio State University, provides evidence that homicide rates are linked to how citizens feel about the legitimacy of government and their sense of connectedness ...
NSF awards new funding to bolster UVA research computing project
2024-08-02
The National Science Foundation is awarding a new grant to support the Virginia Assuring Controls Compliance of Research Data project, known as ACCORD, a program that has helped students and faculty at universities across Virginia gain access to critical research computing resources.
The ACCORD program has provided a platform for researchers to securely share and store data as well as take on projects that require the protection of sensitive data. Participants have included minority-serving institutions, those that do not grant Ph.D. degrees, and others that lack this computing infrastructure.
Neal Magee, an associate professor with the University of Virginia’s ...