Unveiling the secret of blood regeneration: New insights into stress responses in hematopoietic stem cells (HSC)
2024-08-22
(Press-News.org)
Kumamoto University researchers have made a groundbreaking discovery that sheds light on how the HMGA2 gene—an essential transcriptional activator involved in chromatin modification—regulates stress responses in hematopoietic stem cells (HSCs), thereby enhancing blood cell production recovery.
Exposure to infections or treatments such as chemotherapy often leads to a rapid decline in blood cells, including red blood cells and platelets. HSCs, which reside in the bone marrow that can develop into various types of blood cells, are crucial for recovering from these stress-induced blood disorders. Under stressd conditions, these stem cells proliferate and differentiate to produce blood cells. However, the exact mechanisms of this process have remained unclear.
The research team, led by Professor Goro Sashida from Kumamoto University's International Research Center for Medical Sciences (IRCMS), focused on HMGA2, a gene highly active in proliferating fetal hematopoietic stem cells. HMGA2 has been well known for its role in binding to DNA and modifying chromatin structure to activate gene expression. In addition, it is also critical for enhancing the stem cells' self-renewal capacity. This significance prompted the researchers to further investigate its role in this study
Using conditional knock-in (cKI) and knock-out (KO) mice, the researchers analyzed HMGA2's role in HSC function under both normal and stress conditions, such as exposure to chemotherapy and inflammatory cytokines. They found that overexpression of HMGA2 significantly accelerates the recovery of HSCs and blood production under stress. Conversely, HMGA2 KO mice showed a reduced number of HSCs and platelet precursor cells.
Professor Sashida explained the findings: “Our studies reveal that HMGA2 interacts with chromatin in response to inflammatory cytokines. It is phosphorylated by casein kinase 2 (CK2), which promotes its binding to chromatin and suppresses inflammation-related transcription factors, thereby modulating the inflammatory response.”
This discovery not only enhances our understanding of blood cell regeneration mechanisms but also holds promising potential for developing therapies to rapidly restore blood cell production in individuals suffering from severe infections or post-cancer treatment blood disorders.
END
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2024-08-22
Physicians at the Medical College of Georgia at Augusta University are working with Polaris Dawn, the first of the Polaris Program’s three human spaceflight missions, to better understand the eye changes many astronauts experience during spaceflight that can leave them with a wide range of symptoms once they return to Earth — from a new need for glasses to significant loss of vision. The Polaris Program is a first-of-its-kind effort to rapidly advance human spaceflight capabilities while continuing to raise funds and awareness for important causes on Earth.
More than 70% of astronauts experience a phenomenon ...
2024-08-22
Training deep learning models on large datasets is essential for their success; however, these datasets often contain label noise, which can significantly decrease the classification performance on test datasets. To address this issue, a research team consisting of Enes Dedeoglu, H. Toprak Kesgin, and Prof. Dr. M. Fatih Amasyali from Yildiz Technical University developed a groundbreaking method called Adaptive-k, which improves the optimization process and yields better results in the presence of label noise. Their research was published on 15 August 2024 in ...
2024-08-22
□ A team led by Professor Ji-woong Yang of DGIST’s (President Kun-woo Lee) Department of Energy Science and Engineering, in collaboration with Professor Moon-kee Choi of UNIST's Department of New Materials and Dr. Taeg-hwan Hyun of the IBS Nanoparticle Research Center, has developed a double-layer dry transfer printing technology that simultaneously transfers light-emitting and electron-transferring layers onto a substrate. This technology is expected to provide a more life-like view in augmented reality (AR) and virtual reality (VR), greatly enhancing the immersive experience.
□ ...
2024-08-22
Shawna Hollen, associate professor of physics, has been named to The Gordon and Betty Moore Foundation’s 2024 cohort of Experimental Physics Investigators. The prestigious honor, which is accompanied by $1.25 million in funding over the next five years, will advance understanding of the link between charge density waves and quantum dots, two physical phenomena that could lead to improvements in quantum computing.
“The ideas that I put forward [in my proposal] haven’t been demonstrated. It’s not something that anyone else ...
2024-08-22
In 2011, UNESCO issued The UNESCO Recommendation on the Historic Urban Landscape (“The Recommendation” hereafter), introducing the concept of “historic urban landscape” (HUL). HUL is defined as “the urban context and its geographical setting taking into consideration the historical layering of cultural and natural values and attributes”. It is noteworthy that ancient towns or historic cities, as an important subclass of HUL, have garnered increasing attention. In recent years, public perception and emotional experience of physical environments have become ...
2024-08-22
Metasurfaces are two-dimensional counterparts of metamaterials, which are the artificial materials that possess unusual characteristics. With a variety of fascinatingly innovative and diverse uses, these specially-prepared surfaces with engineered patterns can modify the propagation of electromagnetic waves across the entire spectrum of wavelengths. Though the journey of metamaterials began with metal-dielectric systems, the metasurfaces have gone all-dielectric, and are crucial in applications relating to optoelectronic devices such as solar cells and light emitting diodes (LED) to improve their efficiency through a mere surface effect.
Student researchers led ...
2024-08-22
This year, New Zealand became among the first countries in the world to force their largest companies and financial institutions (about 200 in all) to disclose their climate-related risks and opportunities in their annual reports, and make regulatory filings.
Over the last month, these reports have been filed under the disclosure regime led by the Financial Markets Authority.
But do these kinds of initiatives improve environmental outcomes?
A new study, co-authored by Professor Charl de Villiers (University of Auckland, Business ...
2024-08-22
Solution-processed semiconductor nanocrystals are also called colloidal quantum dots (QDs). While the concept of size-dependent quantum effects had been long known to physicists, a sculpture of the theory into real nanodimensional objects remained impossible till the discovery of QDs. The size-dependent colors of QDs are essentially naked-eye, ambient-condition visualization of the quantum size effect. In recent years, researchers across the world have been searching for fascinating quantum effects or phenomena using the material platform of QDs, such as single-photon emission and quantum coherence manipulation.
Floquet states (i.e., ...
2024-08-22
Antarctica’s unique ecosystems could be threatened by the arrival of non-native marine species and marine pollution from Southern Hemisphere landmasses, new oceanographic modelling shows.
In a study published today in Global Change Biology, scientists from UNSW Sydney, ANU, University of Otago and the University of South Florida suggest that floating objects can reach Antarctic waters from more sources than previously thought.
“An increasing abundance of plastics and other human made debris in the oceans means there are potentially more opportunities ...
2024-08-22
A recent study has explored the legal and ethical challenges expected to arise in human brain organoid research.
Human brain organoids are three-dimensional neural tissues derived from stem cells that can mimic some aspects of the human brain. Their use holds incredible promise for medical advancements, but this also raises complex ethical and legal questions that need careful consideration.
Seeking to examine the various legal challenges that might arise in the context of human brain organoid research and its applications, the team of researchers, which included a legal scholar, identified and ...
LAST 30 PRESS RELEASES:
[Press-News.org] Unveiling the secret of blood regeneration: New insights into stress responses in hematopoietic stem cells (HSC)